Concurrent GOLD and SABER Observations of Thermosphere Composition and Temperature Responses to the April 23–24, 2023 Geomagnetic Storm

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Xuguang Cai, Wenbin Wang, Richard W. Eastes, Liying Qian, Martin G. Mlynczak, J. S. Evans, Ningchao Wang, Nabil Nowak, Nicholas Pedatella, Kun Wu
{"title":"Concurrent GOLD and SABER Observations of Thermosphere Composition and Temperature Responses to the April 23–24, 2023 Geomagnetic Storm","authors":"Xuguang Cai,&nbsp;Wenbin Wang,&nbsp;Richard W. Eastes,&nbsp;Liying Qian,&nbsp;Martin G. Mlynczak,&nbsp;J. S. Evans,&nbsp;Ningchao Wang,&nbsp;Nabil Nowak,&nbsp;Nicholas Pedatella,&nbsp;Kun Wu","doi":"10.1029/2025JA033912","DOIUrl":null,"url":null,"abstract":"<p>The Global-scale Observations of Limb and Disk (GOLD) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instruments were used to investigate the thermospheric composition and temperature responses to the geomagnetic storm on 23–24 April, 2023. Global-scale Observations of Limb and Disk observed a faster recovery of thermospheric column density ratio of O to N<sub>2</sub> (ΣO/N<sub>2</sub>) in the southern hemisphere (SH) after the storm ended at 12 Universal time (UT) on 24 April. After 12 UT on 25 April, ΣO/N<sub>2</sub> had mostly recovered in both hemispheres. Global-scale Observations of Limb and Disk also observed an increase of middle thermospheric temperature (140–200 km) (Tdisk) on 24 April with a maximum of 340 K. Within 4–6 hr of the storm ending on 24 April, Tdisk enhancement persisted between 30°N and 60°N, 100°W and 30°W, while Tdisk lower than pre-storm quiet day (17 April) was observed between 45°W and 15°W, 40°S and 50°N. Tdisk recovered between 100°W and 45°W, 30°N and 55°S. On 25 April, Tdisk was lower than on 17 April across the entire GOLD Field-of-Regard (FOR) by ∼50–110 K. Additionally, solar irradiance decreased by 15%–20% from 17 to 25 April, indicating that the lower Tdisk on 25 April resulted from both storm and solar irradiance variations. Latitudinal variations of Tdisk and the SABER observed Nitric Oxide (NO) cooling rate revealed that NO cooling is crucial for the lower Tdisk in the northern hemisphere (NH) mid-high latitudes on 25 April. These results provide direct evidence of decreased thermospheric temperature during storm recovery phase than pre-storm quiet times.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033912","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Global-scale Observations of Limb and Disk (GOLD) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instruments were used to investigate the thermospheric composition and temperature responses to the geomagnetic storm on 23–24 April, 2023. Global-scale Observations of Limb and Disk observed a faster recovery of thermospheric column density ratio of O to N2 (ΣO/N2) in the southern hemisphere (SH) after the storm ended at 12 Universal time (UT) on 24 April. After 12 UT on 25 April, ΣO/N2 had mostly recovered in both hemispheres. Global-scale Observations of Limb and Disk also observed an increase of middle thermospheric temperature (140–200 km) (Tdisk) on 24 April with a maximum of 340 K. Within 4–6 hr of the storm ending on 24 April, Tdisk enhancement persisted between 30°N and 60°N, 100°W and 30°W, while Tdisk lower than pre-storm quiet day (17 April) was observed between 45°W and 15°W, 40°S and 50°N. Tdisk recovered between 100°W and 45°W, 30°N and 55°S. On 25 April, Tdisk was lower than on 17 April across the entire GOLD Field-of-Regard (FOR) by ∼50–110 K. Additionally, solar irradiance decreased by 15%–20% from 17 to 25 April, indicating that the lower Tdisk on 25 April resulted from both storm and solar irradiance variations. Latitudinal variations of Tdisk and the SABER observed Nitric Oxide (NO) cooling rate revealed that NO cooling is crucial for the lower Tdisk in the northern hemisphere (NH) mid-high latitudes on 25 April. These results provide direct evidence of decreased thermospheric temperature during storm recovery phase than pre-storm quiet times.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信