Femtosecond Laser Transmission Joining of Fused Silica and Polymethyl Methacrylate

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Felice Alberto Sfregola, Raffaele De Palo, Caterina Gaudiuso, Pietro Patimisco, Antonio Ancona, Annalisa Volpe
{"title":"Femtosecond Laser Transmission Joining of Fused Silica and Polymethyl Methacrylate","authors":"Felice Alberto Sfregola,&nbsp;Raffaele De Palo,&nbsp;Caterina Gaudiuso,&nbsp;Pietro Patimisco,&nbsp;Antonio Ancona,&nbsp;Annalisa Volpe","doi":"10.1002/mame.202400354","DOIUrl":null,"url":null,"abstract":"<p>In this study, polymethyl methacrylate (PMMA) is joined with fused silica using pulsed femtosecond laser transmission micro-welding. This technique enables the welding of transparent materials to each other without the need for intermediate opaque layers, through localized energy deposition. The laser parameters – peak fluence, scanning speed, and hatch distance – are systematically optimized to maximize joint shear strength. The ATR-FTIR spectroscopic analysis has proven that mechanical interlocking is the primary mechanism of joint formation between the two materials. An analytical model based on heat accumulation is developed to describe the joining process, with a good predictive quality confirmed by comparison with the experimental results. This joining approach is applied to seal a hybrid PMMA-fused silica microfluidic chip. The device has successfully passed a static leakage test by withstanding pressures up to the full-scale value of the employed microfluidic pump at 2 bar, demonstrating the effectiveness of femtosecond laser transmission welding for fabricating robust and reliable joints in hybrid microfluidic devices.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400354","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400354","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, polymethyl methacrylate (PMMA) is joined with fused silica using pulsed femtosecond laser transmission micro-welding. This technique enables the welding of transparent materials to each other without the need for intermediate opaque layers, through localized energy deposition. The laser parameters – peak fluence, scanning speed, and hatch distance – are systematically optimized to maximize joint shear strength. The ATR-FTIR spectroscopic analysis has proven that mechanical interlocking is the primary mechanism of joint formation between the two materials. An analytical model based on heat accumulation is developed to describe the joining process, with a good predictive quality confirmed by comparison with the experimental results. This joining approach is applied to seal a hybrid PMMA-fused silica microfluidic chip. The device has successfully passed a static leakage test by withstanding pressures up to the full-scale value of the employed microfluidic pump at 2 bar, demonstrating the effectiveness of femtosecond laser transmission welding for fabricating robust and reliable joints in hybrid microfluidic devices.

Abstract Image

在这项研究中,使用脉冲飞秒激光透射微焊接技术将聚甲基丙烯酸甲酯(PMMA)与熔融石英连接在一起。这项技术通过局部能量沉积,实现了透明材料之间的焊接,而无需中间的不透明层。激光参数--峰值通量、扫描速度和舱口距离--都经过系统优化,以最大限度地提高接合处的剪切强度。ATR-FTIR 光谱分析证明,机械互锁是两种材料形成接缝的主要机制。基于热量积累建立的分析模型可用于描述接合过程,通过与实验结果的比较,证实了该模型具有良好的预测性。这种连接方法被应用于密封混合 PMMA 熔融石英微流控芯片。该装置成功地通过了静态泄漏测试,承受的压力达到了所使用的微流泵的满量程值(2 巴),证明了飞秒激光透射焊接在混合微流控装置中制造坚固可靠的接头方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信