Imaging Thermocline Microstructure in 2D With Swaths Traced by Wave-Pumped χ $\chi $ pods

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Kenneth G. Hughes, James N. Moum
{"title":"Imaging Thermocline Microstructure in 2D With Swaths Traced by Wave-Pumped \n \n \n χ\n \n $\\chi $\n pods","authors":"Kenneth G. Hughes,&nbsp;James N. Moum","doi":"10.1029/2024JC022134","DOIUrl":null,"url":null,"abstract":"<p>Quasi two-dimensional visualizations of microstructure in the thermocline are created by processing <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n </mrow>\n <annotation> $\\chi $</annotation>\n </semantics></math>pod signals in a nonstandard way. As the moored instrument is pumped by surface waves, the fast thermistors at each end trace out vertically overlapping paths, from which we produce 2–3 m tall swaths. A swath capturing the unmistakable form of Kelvin–Helmholtz billows provides a proof of concept—albeit by relying on what is a rare event in our data set in which the flow is generally stable (as per the Richardson number). More commonly, swaths exhibit steppy temperature fields during weaker turbulence, an abundance of small overturns during stronger turbulence, or some combination thereof. To examine this continuum statistically, we take a 13-month data set from an equatorial <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n </mrow>\n <annotation> $\\chi $</annotation>\n </semantics></math>pod at a 120-m depth and divide it into 53,000 swaths, each 10-min long. Swaths are ordered based on their associated buoyancy Reynolds number <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>e</mi>\n <mi>b</mi>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left(\\mathrm{R}{\\mathrm{e}}_{\\mathrm{b}}\\right)$</annotation>\n </semantics></math> inferred from our standard <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n </mrow>\n <annotation> $\\chi $</annotation>\n </semantics></math>pod processing. Clear visual differences in swath characteristics arise when comparing across an order of magnitude or more (e.g., <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>e</mi>\n <mi>b</mi>\n </msub>\n <mo>&lt;</mo>\n <mn>10</mn>\n </mrow>\n <annotation> $\\mathrm{R}{\\mathrm{e}}_{\\mathrm{b}}&lt; 10$</annotation>\n </semantics></math> vs. <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>e</mi>\n <mi>b</mi>\n </msub>\n <mo>=</mo>\n <mn>10</mn>\n </mrow>\n <annotation> $\\mathrm{R}{\\mathrm{e}}_{\\mathrm{b}}=10$</annotation>\n </semantics></math>–100 vs. <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>e</mi>\n <mi>b</mi>\n </msub>\n <mo>&gt;</mo>\n <mn>100</mn>\n </mrow>\n <annotation> $\\mathrm{R}{\\mathrm{e}}_{\\mathrm{b}} &gt; 100$</annotation>\n </semantics></math>). With the help of a convolutional neural network to semiobjectively pick representative swaths, we present our best estimates of what microstructure looks like in two dimensions as a function of <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>e</mi>\n <mi>b</mi>\n </msub>\n </mrow>\n <annotation> $\\mathrm{R}{\\mathrm{e}}_{\\mathrm{b}}$</annotation>\n </semantics></math>.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC022134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC022134","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi two-dimensional visualizations of microstructure in the thermocline are created by processing χ $\chi $ pod signals in a nonstandard way. As the moored instrument is pumped by surface waves, the fast thermistors at each end trace out vertically overlapping paths, from which we produce 2–3 m tall swaths. A swath capturing the unmistakable form of Kelvin–Helmholtz billows provides a proof of concept—albeit by relying on what is a rare event in our data set in which the flow is generally stable (as per the Richardson number). More commonly, swaths exhibit steppy temperature fields during weaker turbulence, an abundance of small overturns during stronger turbulence, or some combination thereof. To examine this continuum statistically, we take a 13-month data set from an equatorial χ $\chi $ pod at a 120-m depth and divide it into 53,000 swaths, each 10-min long. Swaths are ordered based on their associated buoyancy Reynolds number R e b $\left(\mathrm{R}{\mathrm{e}}_{\mathrm{b}}\right)$ inferred from our standard χ $\chi $ pod processing. Clear visual differences in swath characteristics arise when comparing across an order of magnitude or more (e.g., R e b < 10 $\mathrm{R}{\mathrm{e}}_{\mathrm{b}}< 10$ vs. R e b = 10 $\mathrm{R}{\mathrm{e}}_{\mathrm{b}}=10$ –100 vs. R e b > 100 $\mathrm{R}{\mathrm{e}}_{\mathrm{b}} > 100$ ). With the help of a convolutional neural network to semiobjectively pick representative swaths, we present our best estimates of what microstructure looks like in two dimensions as a function of R e b $\mathrm{R}{\mathrm{e}}_{\mathrm{b}}$ .

Abstract Image

用波泵浦x $\chi $ pods追踪的二维温跃层微观结构成像
通过以非标准方式处理χ $\chi $ pod信号,创建了温跃层中微观结构的准二维可视化。当系泊的仪器被表面波泵送时,两端的快速热敏电阻会划出垂直重叠的路径,从中我们可以产生2-3米高的条带。一张捕捉到开尔文-亥姆霍兹波浪的明确形式的条形图提供了一个概念的证明——尽管这是依赖于我们的数据集中一个罕见的事件,在这个事件中,流动通常是稳定的(根据理查森数)。更常见的是,狭长地带在较弱的湍流中表现出陡峭的温度场,在较强的湍流中表现出大量的小倾覆,或者它们的某种组合。为了从统计上检验这一连续体,我们从120米深的赤道χ $\chi $吊舱中获取了13个月的数据集,并将其划分为53,000条,每条10分钟长。根据从我们的标准χ推断出的相关浮力雷诺数Re b $\left(\mathrm{R}{\mathrm{e}}_{\mathrm{b}}\right)$对条带进行排序$\chi $豆荚加工。当在一个数量级或更多的数量级上进行比较时,会出现明显的带状特征视觉差异(例如,R e b &lt;10 $\mathrm{R}{\mathrm{e}}_{\mathrm{b}}< 10$ vs. R e b = 10 $\mathrm{R}{\mathrm{e}}_{\mathrm{b}}=10$ -100 vs. R e b&gt;100 $\mathrm{R}{\mathrm{e}}_{\mathrm{b}} > 100$)。在卷积神经网络的帮助下,我们半客观地选择了具有代表性的条,我们给出了二维微观结构的最佳估计,即R e b $\mathrm{R}{\mathrm{e}}_{\mathrm{b}}$的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信