Response of soil basal respiration rates, microbial attributes, and organic matter composition to land-use change

Ming Gao, Wei Hu, Meng Li, Mingming Guo, Yongsheng Yang
{"title":"Response of soil basal respiration rates, microbial attributes, and organic matter composition to land-use change","authors":"Ming Gao,&nbsp;Wei Hu,&nbsp;Meng Li,&nbsp;Mingming Guo,&nbsp;Yongsheng Yang","doi":"10.1002/saj2.70052","DOIUrl":null,"url":null,"abstract":"<p>Land-use change directly impacts soil basal respiration (Br), soil microbial attributes, and soil organic matter (SOM) composition. However, the role of soil microbial attributes and SOM composition in influencing soil Br under land-use changes remains largely undetermined. We examined how interactions between soil physicochemical properties, SOM chemical structure, and microbial attributes regulate soil Br across three land-use types, cropland, forest, and grassland, in the Mollisol and Arenosol of Horqin Sandy Land. The results showed that soil Br, phospholipid fatty acid content, and the relative peak areas of aliphatic and aromatic compounds were significantly lower in cropland than in forest and grassland. Additionally, the Arenosol exhibited poorer soil properties compared to the Mollisol (<i>p</i> &lt; 0.05). Soil Br in the Mollisol (3.60–5.56 mgCO<sub>2</sub>-C kg<sup>−1</sup> h<sup>−1</sup>) was significantly higher than in the Arenosol (0.86–2.60 mgCO<sub>2</sub>-C kg<sup>−1</sup> h<sup>−1</sup>, <i>p</i> &lt; 0.05). G<sup>+</sup>/G<sup>−</sup> ratios and bacteria were identified as the main predictors of Br in the Mollisol and Arenosol, respectively. The structural equation model revealed that microbial attributes are the primary drivers of Br, influencing it indirectly through changes in SOM composition. Our findings are instrumental in understanding the role of microbial attributes in carbon turnover during land-use changes.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://acsess.onlinelibrary.wiley.com/doi/10.1002/saj2.70052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Land-use change directly impacts soil basal respiration (Br), soil microbial attributes, and soil organic matter (SOM) composition. However, the role of soil microbial attributes and SOM composition in influencing soil Br under land-use changes remains largely undetermined. We examined how interactions between soil physicochemical properties, SOM chemical structure, and microbial attributes regulate soil Br across three land-use types, cropland, forest, and grassland, in the Mollisol and Arenosol of Horqin Sandy Land. The results showed that soil Br, phospholipid fatty acid content, and the relative peak areas of aliphatic and aromatic compounds were significantly lower in cropland than in forest and grassland. Additionally, the Arenosol exhibited poorer soil properties compared to the Mollisol (p < 0.05). Soil Br in the Mollisol (3.60–5.56 mgCO2-C kg−1 h−1) was significantly higher than in the Arenosol (0.86–2.60 mgCO2-C kg−1 h−1, p < 0.05). G+/G ratios and bacteria were identified as the main predictors of Br in the Mollisol and Arenosol, respectively. The structural equation model revealed that microbial attributes are the primary drivers of Br, influencing it indirectly through changes in SOM composition. Our findings are instrumental in understanding the role of microbial attributes in carbon turnover during land-use changes.

Abstract Image

Abstract Image

Abstract Image

土壤基础呼吸速率、微生物属性和有机质组成对土地利用变化的响应
土地利用变化直接影响土壤基础呼吸(Br)、微生物属性和土壤有机质(SOM)组成。然而,在土地利用变化条件下,土壤微生物属性和SOM组成对土壤Br的影响尚不明确。研究了科尔沁沙地Mollisol和Arenosol三种土地利用类型(农田、森林和草地)土壤理化性质、SOM化学结构和微生物属性之间的相互作用对土壤Br的调节作用。结果表明:农田土壤Br、磷脂脂肪酸含量、脂肪族化合物和芳香族化合物的相对峰面积均显著低于森林和草地;此外,与Mollisol相比,arennosol表现出较差的土壤性质(p <;0.05)。Mollisol土壤Br (3.60 ~ 5.56 mgCO2-C kg−1 h−1)显著高于Arenosol (0.86 ~ 2.60 mgCO2-C kg−1 h−1),p <;0.05)。G+/G−比值和细菌分别是Mollisol和Arenosol中Br的主要预测因子。结构方程模型表明,微生物属性是Br的主要驱动因素,通过SOM组成的变化间接影响Br。我们的发现有助于理解微生物属性在土地利用变化期间碳周转中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信