Yasser M. Moustafa, Sherif S. Abdel Mageed, Walaa A. El-Dakroury, Hebatallah Ahmed Mohamed Moustafa, Al-Aliaa M. Sallam, Ahmed I. Abulsoud, Nourhan M. Abdelmaksoud, Osama A. Mohammed, Yousra Nomier, Ahmed E. Elesawy, Mustafa Ahmed Abdel-Reheim, Mohamed Bakr Zaki, Nehal I. Rizk, Abdullah Ayed, Randa A. Ibrahim, Ahmed S. Doghish
{"title":"Exploring the molecular pathways of miRNAs in testicular cancer: from diagnosis to therapeutic innovations","authors":"Yasser M. Moustafa, Sherif S. Abdel Mageed, Walaa A. El-Dakroury, Hebatallah Ahmed Mohamed Moustafa, Al-Aliaa M. Sallam, Ahmed I. Abulsoud, Nourhan M. Abdelmaksoud, Osama A. Mohammed, Yousra Nomier, Ahmed E. Elesawy, Mustafa Ahmed Abdel-Reheim, Mohamed Bakr Zaki, Nehal I. Rizk, Abdullah Ayed, Randa A. Ibrahim, Ahmed S. Doghish","doi":"10.1007/s10142-025-01599-w","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer diagnostics highlight the critical requirement for sensitive and accurate tools with functional biomarkers for early tumor detection, diagnosis, and treatment. With a high burden of morbidity and mortality among young men worldwide and an increasing prevalence, Testicular cancer (TC) is a significant death-related cancer. Along with patient history, imaging, clinical presentation, and laboratory data, histological analysis of the testicular tissue following orchiectomy is crucial. Although some patients in advanced stages who belong to a poor risk group die from cancer, surgical treatments and chemotherapeutic treatment offer a high possibility of cure in the early stages. Testicular tumors lack useful indicators despite their traditional pathological classification, which highlights the need to find and use blood tumor markers in therapy. Regretfully, the sensitivity and specificity of the currently available biomarkers are restricted. Novel non-coding RNA molecules, microRNAs (miRNAs), have recently been discovered, offering a potential breakthrough as viable biomarkers and diagnostic tools. They act as fundamental gene regulators at the post-transcriptional level, controlling cell proliferation, differentiation, and apoptosis. This article aims to comprehensively explore the role of miRNAs in the pathophysiology, diagnosis, and treatment of TC, with a focus on their regulatory mechanisms within key signaling pathways such as TGF-β, PTEN/AKT/mTOR, EGFR, JAK/STAT, and WNT/β-catenin. By investigating the potential of miRNAs as diagnostic and prognostic biomarkers and therapeutic targets, this study seeks to address challenges such as treatment resistance and evaluate the clinical importance of miRNAs in improving patient outcomes. Additionally, the work aims to explore innovative approaches, including nanoparticle-based delivery systems, to enhance the efficacy of miRNA-based therapies. Ultimately, this research aims to provide insights into future directions for precision medicine in TC, bridging the gap between molecular discoveries and clinical applications.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01599-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer diagnostics highlight the critical requirement for sensitive and accurate tools with functional biomarkers for early tumor detection, diagnosis, and treatment. With a high burden of morbidity and mortality among young men worldwide and an increasing prevalence, Testicular cancer (TC) is a significant death-related cancer. Along with patient history, imaging, clinical presentation, and laboratory data, histological analysis of the testicular tissue following orchiectomy is crucial. Although some patients in advanced stages who belong to a poor risk group die from cancer, surgical treatments and chemotherapeutic treatment offer a high possibility of cure in the early stages. Testicular tumors lack useful indicators despite their traditional pathological classification, which highlights the need to find and use blood tumor markers in therapy. Regretfully, the sensitivity and specificity of the currently available biomarkers are restricted. Novel non-coding RNA molecules, microRNAs (miRNAs), have recently been discovered, offering a potential breakthrough as viable biomarkers and diagnostic tools. They act as fundamental gene regulators at the post-transcriptional level, controlling cell proliferation, differentiation, and apoptosis. This article aims to comprehensively explore the role of miRNAs in the pathophysiology, diagnosis, and treatment of TC, with a focus on their regulatory mechanisms within key signaling pathways such as TGF-β, PTEN/AKT/mTOR, EGFR, JAK/STAT, and WNT/β-catenin. By investigating the potential of miRNAs as diagnostic and prognostic biomarkers and therapeutic targets, this study seeks to address challenges such as treatment resistance and evaluate the clinical importance of miRNAs in improving patient outcomes. Additionally, the work aims to explore innovative approaches, including nanoparticle-based delivery systems, to enhance the efficacy of miRNA-based therapies. Ultimately, this research aims to provide insights into future directions for precision medicine in TC, bridging the gap between molecular discoveries and clinical applications.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?