Younes Errouas, Ilyass El Kadmiri, Youssef Ben-Ali, Driss Bria
{"title":"Filtering and Guiding Electromagnetic Waves with a Fibonacci-Inspired Staircase Comb-Like Structure","authors":"Younes Errouas, Ilyass El Kadmiri, Youssef Ben-Ali, Driss Bria","doi":"10.1134/S1063783425600165","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the electromagnetic wave filtering and guiding properties of a novel Fi-bonacci-type staircase comb-like structure. Leveraging the unique quasi-periodic geometry inspired by Fibonacci sequences, the structure exhibits tunable photonic band gaps and resonance phenomena. Through rigorous numerical simulations and analytical modeling, we explore the impact of geometric parameters on transmission, reflection, and propagation characteristics across a wide frequency range. Results demonstrate the structure’s ability to achieve selective frequency filtering and efficient waveguiding, with potential applications in photonic devices such as multi-channel filters, sensors, and integrated optical circuits. The findings underline the versatility of Fibonacci-based designs in engineering advanced photonic systems.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 4","pages":"324 - 330"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783425600165","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the electromagnetic wave filtering and guiding properties of a novel Fi-bonacci-type staircase comb-like structure. Leveraging the unique quasi-periodic geometry inspired by Fibonacci sequences, the structure exhibits tunable photonic band gaps and resonance phenomena. Through rigorous numerical simulations and analytical modeling, we explore the impact of geometric parameters on transmission, reflection, and propagation characteristics across a wide frequency range. Results demonstrate the structure’s ability to achieve selective frequency filtering and efficient waveguiding, with potential applications in photonic devices such as multi-channel filters, sensors, and integrated optical circuits. The findings underline the versatility of Fibonacci-based designs in engineering advanced photonic systems.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.