{"title":"Photo-Degradation of Dexamethasone through Radical-Based Advanced Oxidation Processes Using UV/H2O2 and Fe2+/UV/H2O2 Systems","authors":"T. Isac-Gutul, E. Tutovan, D. L. Nika","doi":"10.1134/S1063783425600670","DOIUrl":null,"url":null,"abstract":"<p>We report on the effective degradation of dexamethasone (DEX) using systems that generate <b>·</b>OH radicals based on advanced oxidation processes, specifically UV/H<sub>2</sub>O<sub>2</sub> and photo-Fenton systems. The effects of such parameters as pH (3–11), H<sub>2</sub>O<sub>2</sub> concentration (0.85–68 mg/L) and initial DEX concentration (20–80 mg/L) on degradation were investigated at the temperature range 5–30°C. The efficiency of degradation degree in UV/H<sub>2</sub>O<sub>2</sub> system was found to be 90.92% under the optimal conditions: pH 7, after 8 min, DEX concentration of 40 mg/L, H<sub>2</sub>O<sub>2</sub> concentration of 0.85 mg/L, UV radiation of 1000 W and at the temperature of 25°C. Usage of hydrogen peroxide as an oxidant becomes an additional source of <b>·</b>OH radicals and reinforces oxidation of the considered drugs. Advanced oxidation technologies, including UV/H<sub>2</sub>O<sub>2</sub>, sa-tisfy a pseudo second-order reaction kinetics model, the values of the constant are between 0.386 and 1.249 L/(mg min). The degradation process of DEX in the photo-Fenton system was studied at different Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> ratios, between 1 : 10 and 1 : 80, the optimal ratio was found to be 1 : 50 under the following conditions: H<sub>2</sub>O<sub>2</sub> concentration of 2.5 × 10<sup>–3</sup> mg/L, DEX concentration of 40 mg/L, at pH 4, Fe<sup>2+</sup> concentration of 0.5 × 10<sup>–4</sup> mg/L, at a temperature of 25°C. The addition of Fe<sup>2+</sup> ions as a catalyst allowed to increase the degradation degree of DEX in the photo-Fenton system up to 99.87%.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 4","pages":"292 - 301"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783425600670","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We report on the effective degradation of dexamethasone (DEX) using systems that generate ·OH radicals based on advanced oxidation processes, specifically UV/H2O2 and photo-Fenton systems. The effects of such parameters as pH (3–11), H2O2 concentration (0.85–68 mg/L) and initial DEX concentration (20–80 mg/L) on degradation were investigated at the temperature range 5–30°C. The efficiency of degradation degree in UV/H2O2 system was found to be 90.92% under the optimal conditions: pH 7, after 8 min, DEX concentration of 40 mg/L, H2O2 concentration of 0.85 mg/L, UV radiation of 1000 W and at the temperature of 25°C. Usage of hydrogen peroxide as an oxidant becomes an additional source of ·OH radicals and reinforces oxidation of the considered drugs. Advanced oxidation technologies, including UV/H2O2, sa-tisfy a pseudo second-order reaction kinetics model, the values of the constant are between 0.386 and 1.249 L/(mg min). The degradation process of DEX in the photo-Fenton system was studied at different Fe2+/H2O2 ratios, between 1 : 10 and 1 : 80, the optimal ratio was found to be 1 : 50 under the following conditions: H2O2 concentration of 2.5 × 10–3 mg/L, DEX concentration of 40 mg/L, at pH 4, Fe2+ concentration of 0.5 × 10–4 mg/L, at a temperature of 25°C. The addition of Fe2+ ions as a catalyst allowed to increase the degradation degree of DEX in the photo-Fenton system up to 99.87%.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.