Revealing the factors affecting the textural properties of Ni-doped carbon xerogels produced via resorcinol-formaldehyde polycondensation

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Grigory B. Veselov, Yury V. Shubin, Pavel E. Plyusnin, Aleksey A. Vedyagin
{"title":"Revealing the factors affecting the textural properties of Ni-doped carbon xerogels produced via resorcinol-formaldehyde polycondensation","authors":"Grigory B. Veselov,&nbsp;Yury V. Shubin,&nbsp;Pavel E. Plyusnin,&nbsp;Aleksey A. Vedyagin","doi":"10.1007/s10971-025-06719-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, a series of Ni-doped carbon xerogels were prepared via resorcinol-formaldehyde polycondensation and subsequent pyrolysis of organic xerogels. As found, introducing nickel acetate into the resorcinol-formaldehyde gels does not lead to the reduction of Ni or the formation of large Ni particles. Due to the even distribution of acetate ions in the organic xerogel matrix, their decomposition occurs at a temperature of ~520 °C, when the matrix is almost disintegrated. This gives additional amounts of carbon oxides, which are released at this temperature and affect the porous structure. Carbon xerogel containing 2.5 wt% Ni possesses the lowest density (0.54 g/cm<sup>3</sup>) and the largest pore volume (1.62 cm<sup>3</sup>/g). Compared with pure carbon xerogel, this sample retains high values of the external (278 m<sup>2</sup>/g) and total (783 m<sup>2</sup>/g) specific surface areas and does not undergo graphitization. It is worth noting that pH has little effect on the porous structure of carbon xerogel doped with a low amount of nickel. Contrarily, varying the concentration of resorcinol and formaldehyde in the solution allows obtaining Ni-doped carbon xerogels with tunable pore radius ranging from 16 to 200 nm and density in the range of 0.27–0.80 g/cm<sup>3</sup>. On the other hand, the textural properties of the xerogel matrix were found to influence the agglomeration process of nickel particles during the pyrolysis stage. In the case of mesoporous and macroporous xerogels, the agglomeration of Ni particles is hindered due to the texture limitations or the blockage of small nickel particles inside the matrix.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"114 2","pages":"625 - 640"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-025-06719-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, a series of Ni-doped carbon xerogels were prepared via resorcinol-formaldehyde polycondensation and subsequent pyrolysis of organic xerogels. As found, introducing nickel acetate into the resorcinol-formaldehyde gels does not lead to the reduction of Ni or the formation of large Ni particles. Due to the even distribution of acetate ions in the organic xerogel matrix, their decomposition occurs at a temperature of ~520 °C, when the matrix is almost disintegrated. This gives additional amounts of carbon oxides, which are released at this temperature and affect the porous structure. Carbon xerogel containing 2.5 wt% Ni possesses the lowest density (0.54 g/cm3) and the largest pore volume (1.62 cm3/g). Compared with pure carbon xerogel, this sample retains high values of the external (278 m2/g) and total (783 m2/g) specific surface areas and does not undergo graphitization. It is worth noting that pH has little effect on the porous structure of carbon xerogel doped with a low amount of nickel. Contrarily, varying the concentration of resorcinol and formaldehyde in the solution allows obtaining Ni-doped carbon xerogels with tunable pore radius ranging from 16 to 200 nm and density in the range of 0.27–0.80 g/cm3. On the other hand, the textural properties of the xerogel matrix were found to influence the agglomeration process of nickel particles during the pyrolysis stage. In the case of mesoporous and macroporous xerogels, the agglomeration of Ni particles is hindered due to the texture limitations or the blockage of small nickel particles inside the matrix.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信