{"title":"Insights into the microstructural, optical and magnetic characteristics of cobalt and dysprosium co-doped BaFe12O19 M-type hexagonal ferrites","authors":"Himanshi, Basant Lal, Suman, Natrayan Lakshmaiya, Jahangeer Ahmed, Saad M. Alshehri, Parteek Singh Thind, Sandeep Singh, Abhishek Kandwal, Rohit Jasrotia","doi":"10.1007/s10971-025-06705-9","DOIUrl":null,"url":null,"abstract":"<div><p>This current work aims to analyze the fabrication of Cobalt and Dysprosium co-doped BaFe<sub>12</sub>O<sub>19</sub> of chemical composition, Ba<sub>1-x</sub>Co<sub>x</sub>Dy<sub>y</sub>Fe<sub>12-y</sub>O<sub>19</sub> (x = y = 0.2–0.6) via, the sol-gel auto-combustion (SGAC) technique, with its main objective to improve their structural, surface, microstructural, optical, and magnetic traits. X-ray diffraction reveals the hexagonal structure of prepared co-doped barium hexaferrites with an additional phase of α-Fe<sub>2</sub>O<sub>3</sub> and it is also validated by the Rietveld refinement. The computed crystallite size (D) falls between 22.40 and 41.02 nm. The grain size distribution at the surface of doped barium hexaferrites is reported by the field emission scanning electron microscopy (FESEM) study within in the range of 102.05 to 189.43 nm. The FESEM results confirms a hexagonal morphology for all the samples. The fundamental metal-oxygen (M-O) stretching vibrations at the tetrahedral and octahedral positions are detected via Fourier-transform infrared spectroscopy (FTIR). This approves the existence of distinctive functional groups within the developed hexaferrites. Seven Raman active band positions are found in the Raman spectra of Ba<sub>1-x</sub>Co<sub>x</sub>Dy<sub>y</sub>Fe<sub>12-y</sub>O<sub>19</sub> hexaferrites. The computed specific surface area is found to be 3.478 and 3.352 m<sup>2</sup>/g for the CDH1 and CDH3 hexaferrites. The magnetic results show that with the doping, the coercivity and saturation magnetization decreases. Therefore, due to the excellent Brunauer-Emmett-Teller (BET) and Vibrating sample magnetometry (VSM) results, the Ba<sub>1-x</sub>Co<sub>x</sub>Dy<sub>y</sub>Fe<sub>12-y</sub>O<sub>19</sub> hexaferrites are highly beneficial in the sensors and magnetic recording applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"114 2","pages":"581 - 593"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-025-06705-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This current work aims to analyze the fabrication of Cobalt and Dysprosium co-doped BaFe12O19 of chemical composition, Ba1-xCoxDyyFe12-yO19 (x = y = 0.2–0.6) via, the sol-gel auto-combustion (SGAC) technique, with its main objective to improve their structural, surface, microstructural, optical, and magnetic traits. X-ray diffraction reveals the hexagonal structure of prepared co-doped barium hexaferrites with an additional phase of α-Fe2O3 and it is also validated by the Rietveld refinement. The computed crystallite size (D) falls between 22.40 and 41.02 nm. The grain size distribution at the surface of doped barium hexaferrites is reported by the field emission scanning electron microscopy (FESEM) study within in the range of 102.05 to 189.43 nm. The FESEM results confirms a hexagonal morphology for all the samples. The fundamental metal-oxygen (M-O) stretching vibrations at the tetrahedral and octahedral positions are detected via Fourier-transform infrared spectroscopy (FTIR). This approves the existence of distinctive functional groups within the developed hexaferrites. Seven Raman active band positions are found in the Raman spectra of Ba1-xCoxDyyFe12-yO19 hexaferrites. The computed specific surface area is found to be 3.478 and 3.352 m2/g for the CDH1 and CDH3 hexaferrites. The magnetic results show that with the doping, the coercivity and saturation magnetization decreases. Therefore, due to the excellent Brunauer-Emmett-Teller (BET) and Vibrating sample magnetometry (VSM) results, the Ba1-xCoxDyyFe12-yO19 hexaferrites are highly beneficial in the sensors and magnetic recording applications.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.