Decoupling multiscale morphological effects in templated porous Ag electrodes for electrochemical CO2 reduction†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Maaike E. T. Vink-van Ittersum, Karen van den Akker, Peter Ngene and Petra E. de Jongh
{"title":"Decoupling multiscale morphological effects in templated porous Ag electrodes for electrochemical CO2 reduction†","authors":"Maaike E. T. Vink-van Ittersum, Karen van den Akker, Peter Ngene and Petra E. de Jongh","doi":"10.1039/D4MA00939H","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical reduction of CO<small><sub>2</sub></small> using renewable electricity is a promising strategy to produce sustainable fuels and chemical feedstocks. The use of porous electrodes is a promising approach to increase the activity of electrocatalysts such as Ag which exhibit high CO selectivity. However, it is challenging to fully understand the impact of their complex morphologies. We varied electrodeposition conditions to obtain different micrometer-scale morphologies: flat catalysts and more dendritic (“coral”) catalysts. Performing this electrodeposition in either the absence or the presence of a template, allowed to independently introduce additional porosity of 180 nm cages connected <em>via</em> smaller windows. The structures were relatively stable in catalysis, with some changes on the 10 nm scale at the most negative potentials. The templated Ag catalysts consistently reached higher CO partial current densities than non-templated equivalents. Interestingly, where CO production scaled with the internal electrode surface area, simultaneous H<small><sub>2</sub></small> evolution was impeded in the mesoscale pore network. Therefore, our work shows a promising assembly strategy to deconvolute morphology effects on different length scales, and demonstrates the importance of porosity specifically at the 100 nm scale to enhance CO<small><sub>2</sub></small> conversion to CO in porous Ag electrodes.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 8","pages":" 2588-2599"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00939h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00939h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical reduction of CO2 using renewable electricity is a promising strategy to produce sustainable fuels and chemical feedstocks. The use of porous electrodes is a promising approach to increase the activity of electrocatalysts such as Ag which exhibit high CO selectivity. However, it is challenging to fully understand the impact of their complex morphologies. We varied electrodeposition conditions to obtain different micrometer-scale morphologies: flat catalysts and more dendritic (“coral”) catalysts. Performing this electrodeposition in either the absence or the presence of a template, allowed to independently introduce additional porosity of 180 nm cages connected via smaller windows. The structures were relatively stable in catalysis, with some changes on the 10 nm scale at the most negative potentials. The templated Ag catalysts consistently reached higher CO partial current densities than non-templated equivalents. Interestingly, where CO production scaled with the internal electrode surface area, simultaneous H2 evolution was impeded in the mesoscale pore network. Therefore, our work shows a promising assembly strategy to deconvolute morphology effects on different length scales, and demonstrates the importance of porosity specifically at the 100 nm scale to enhance CO2 conversion to CO in porous Ag electrodes.

模板化多孔银电极在电化学CO2还原中的解耦多尺度形态效应
利用可再生电力对二氧化碳进行电化学还原是一种很有前途的生产可持续燃料和化学原料的策略。多孔电极是提高银等具有高CO选择性的电催化剂活性的一种很有前途的方法。然而,充分了解其复杂形态的影响是具有挑战性的。我们改变电沉积条件以获得不同的微米级形貌:扁平催化剂和更多的枝晶(“珊瑚”)催化剂。在没有或有模板的情况下进行这种电沉积,允许通过更小的窗口独立地引入180 nm笼的额外孔隙度。这些结构在催化过程中相对稳定,在最负电位的10 nm尺度上有一些变化。模板化的Ag催化剂始终比未模板化的催化剂具有更高的CO分电流密度。有趣的是,当CO的生成随内部电极表面积的增加而增加时,在中尺度孔隙网络中,H2的同步演化受到阻碍。因此,我们的工作显示了一种很有前途的组装策略,可以在不同的长度尺度上反卷积形貌效应,并证明了孔隙度的重要性,特别是在100纳米尺度上,孔隙度对提高多孔银电极中CO2转化为CO的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信