High-Power Near Flat-Top Distributed Ultraviolet 330 nm Laser for Photochemical Synthesis

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Qian Ti;Fei Yang;Huan Wang;Da-Fu Cui;Chuan Guo;Qi Bian;Chen Wang;Yong Bo;Qin-Jun Peng
{"title":"High-Power Near Flat-Top Distributed Ultraviolet 330 nm Laser for Photochemical Synthesis","authors":"Qian Ti;Fei Yang;Huan Wang;Da-Fu Cui;Chuan Guo;Qi Bian;Chen Wang;Yong Bo;Qin-Jun Peng","doi":"10.1109/LPT.2025.3556005","DOIUrl":null,"url":null,"abstract":"We demonstrate a 10-watt level nanosecond pulse ultraviolet (UV) 330 nm laser from a two-stage cascaded second harmonic generation (SHG) of 1319 nm Nd:YAG laser. The diode-side-pumped Nd:YAG oscillator at 1319 nm is operated in the Q-switched macro/micro pulse regime, which is beneficial for increasing the average output power of the fundamental wave. In order to further scale the 330 nm output power, two LBO crystals rotated by 180° are employed to compensate for the spatial walk-off effect in the second-stage SHG configuration. Consequently, a record-high average output power of 11.9 W at 330 nm is achieved with total nonlinear conversion efficiency up to 33.1% from infrared to UV. Moreover, the UV circular beam with Gaussian spatial mode is homogenized and reshaped by two pairs of orthogonal cylindrical microlens arrays. Then, a near flat-top distributed square beam with adjustable spot size is realized, which helps to avoid absorption saturation and improve the reaction efficiency in photochemical synthesis.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 9","pages":"516-519"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10945884/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate a 10-watt level nanosecond pulse ultraviolet (UV) 330 nm laser from a two-stage cascaded second harmonic generation (SHG) of 1319 nm Nd:YAG laser. The diode-side-pumped Nd:YAG oscillator at 1319 nm is operated in the Q-switched macro/micro pulse regime, which is beneficial for increasing the average output power of the fundamental wave. In order to further scale the 330 nm output power, two LBO crystals rotated by 180° are employed to compensate for the spatial walk-off effect in the second-stage SHG configuration. Consequently, a record-high average output power of 11.9 W at 330 nm is achieved with total nonlinear conversion efficiency up to 33.1% from infrared to UV. Moreover, the UV circular beam with Gaussian spatial mode is homogenized and reshaped by two pairs of orthogonal cylindrical microlens arrays. Then, a near flat-top distributed square beam with adjustable spot size is realized, which helps to avoid absorption saturation and improve the reaction efficiency in photochemical synthesis.
用于光化学合成的大功率近平顶分布紫外330nm激光器
利用1319 nm Nd:YAG激光器的二级级联二次谐波产生(SHG),制备了10瓦级的纳秒脉冲紫外(UV) 330 nm激光器。将1319 nm二极管侧泵浦Nd:YAG振荡器工作在调q宏/微脉冲状态下,有利于提高基波的平均输出功率。为了进一步扩大330 nm的输出功率,在第二级SHG结构中,采用旋转180°的两个LBO晶体来补偿空间漂移效应。因此,在330 nm处实现了创纪录的11.9 W的平均输出功率,从红外到紫外的总非线性转换效率高达33.1%。利用两对正交圆柱微透镜阵列对高斯空间模紫外圆光束进行均匀化和整形。然后,实现了光斑大小可调的近平顶分布方形光束,避免了吸收饱和,提高了光化学合成的反应效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信