Ferroelectret-Based Insole for Vertical Ground Reaction Force Estimation Using a Convolutional Neural Network

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Omid Mohseni;Janick Betz;Bastian Latsch;Julian Seiler;André Seyfarth;Mario Kupnik
{"title":"Ferroelectret-Based Insole for Vertical Ground Reaction Force Estimation Using a Convolutional Neural Network","authors":"Omid Mohseni;Janick Betz;Bastian Latsch;Julian Seiler;André Seyfarth;Mario Kupnik","doi":"10.1109/LSENS.2025.3553491","DOIUrl":null,"url":null,"abstract":"Precise and portable ground reaction force (GRF) measurement is critical for advancing biomechanical gait analysis and enabling more effective control of robots and assistive devices. This study investigates vertical GRF estimation during walking using a soft, lightweight, and cost-effective 3D-printed ferroelectret insole. The insole design incorporates four monolithically 3D-printed piezoelectric sensors positioned under key foot contact areas, which generate nonlinear voltage in response to applied forces. A 1-D convolutional neural network (CNN), featuring two convolutional and two fully connected layers, was trained to predict vertical GRF across five different walking speeds (50–150% of normal walking speed). The CNN was validated using K-fold cross-validation, enhancing model generalization. Results showed an average root-mean-squared error of 9.24% and <inline-formula><tex-math>$R^{2}$</tex-math></inline-formula> values exceeding 0.99 across different speeds, demonstrating the potential of 3D-printed ferroelectret sensors for portable GRF measurement in gait analysis and robotics applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 5","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10937087/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Precise and portable ground reaction force (GRF) measurement is critical for advancing biomechanical gait analysis and enabling more effective control of robots and assistive devices. This study investigates vertical GRF estimation during walking using a soft, lightweight, and cost-effective 3D-printed ferroelectret insole. The insole design incorporates four monolithically 3D-printed piezoelectric sensors positioned under key foot contact areas, which generate nonlinear voltage in response to applied forces. A 1-D convolutional neural network (CNN), featuring two convolutional and two fully connected layers, was trained to predict vertical GRF across five different walking speeds (50–150% of normal walking speed). The CNN was validated using K-fold cross-validation, enhancing model generalization. Results showed an average root-mean-squared error of 9.24% and $R^{2}$ values exceeding 0.99 across different speeds, demonstrating the potential of 3D-printed ferroelectret sensors for portable GRF measurement in gait analysis and robotics applications.
基于铁电极体的鞋垫垂直地面反作用力卷积神经网络估计
精确和便携的地面反作用力(GRF)测量对于推进生物力学步态分析和更有效地控制机器人和辅助设备至关重要。本研究使用一种柔软、轻便、具有成本效益的3d打印铁驻极体鞋垫研究行走过程中的垂直GRF估计。鞋垫设计结合了四个单片3d打印压电传感器,定位在关键的脚接触区域,产生非线性电压响应施加的力量。一个具有两个卷积层和两个完全连接层的一维卷积神经网络(CNN)被训练来预测五种不同步行速度(正常步行速度的50-150%)下的垂直GRF。使用K-fold交叉验证对CNN进行验证,增强了模型的泛化。结果显示,在不同速度下,平均均方根误差为9.24%,$R^{2}$值超过0.99,表明3d打印铁电极体传感器在步态分析和机器人应用中的便携式GRF测量潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信