Aamir Ullah Khan;Saw James Mint;Syed Najaf Haider Shah;Christian Schneider;Joerg Robert
{"title":"Exploring the Impact of Bistatic Target Reflectivity in ISAC-Enabled V2V Setup Across Diverse Geometrical Road Layouts","authors":"Aamir Ullah Khan;Saw James Mint;Syed Najaf Haider Shah;Christian Schneider;Joerg Robert","doi":"10.1109/OJVT.2025.3554365","DOIUrl":null,"url":null,"abstract":"Integrated Sensing and Communication (ISAC) is an intriguing emerging research area that combines radar sensing and communication functionalities in a unified platform, capitalizing on shared aspects of signal processing, spectrum utilization, and system design. For sensing applications, the reflectivity of objects between Transmitter (TX) and Receiver (RX) is crucial. It is normally modeled as a uniform scatterer or a group of uniform scatterers in wireless channels. These models do not take into account the dependence of reflectivity on the aspect angles of incident and scattering waves, the composed material, and the geometry of the objects. Therefore, we model the reflectivity of target vehicles using their bistatic Radar Cross Section (RCS), as in radar sensing, within a Vehicle to Vehicle (V2V) setup under the Integrated Sensing and Communication (ISAC) framework. Moreover, we consider constant and variable bistatic Target Reflectivity (TR) integrated setups with two diverse traffic scenarios. These traffic scenarios are modeled to be realistic, with diverse geometrical road layouts, variable vehicle velocities, distinct vehicle positions, and the presence of Diffuse (DI) scattering components. Then, we inspect the impact of the bistatic TR on the behavior of the wireless channel and target detection capability. The variable TR integrated setup leads to a more accurate realization of the scenario, leading to outcomes that closely resemble real-world conditions. The results show the substantial impact of the geometrical setup on the distribution of TR, which emphasizes the need to integrate TR into ISAC-enabled V2V channel models.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"948-968"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938128","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938128/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated Sensing and Communication (ISAC) is an intriguing emerging research area that combines radar sensing and communication functionalities in a unified platform, capitalizing on shared aspects of signal processing, spectrum utilization, and system design. For sensing applications, the reflectivity of objects between Transmitter (TX) and Receiver (RX) is crucial. It is normally modeled as a uniform scatterer or a group of uniform scatterers in wireless channels. These models do not take into account the dependence of reflectivity on the aspect angles of incident and scattering waves, the composed material, and the geometry of the objects. Therefore, we model the reflectivity of target vehicles using their bistatic Radar Cross Section (RCS), as in radar sensing, within a Vehicle to Vehicle (V2V) setup under the Integrated Sensing and Communication (ISAC) framework. Moreover, we consider constant and variable bistatic Target Reflectivity (TR) integrated setups with two diverse traffic scenarios. These traffic scenarios are modeled to be realistic, with diverse geometrical road layouts, variable vehicle velocities, distinct vehicle positions, and the presence of Diffuse (DI) scattering components. Then, we inspect the impact of the bistatic TR on the behavior of the wireless channel and target detection capability. The variable TR integrated setup leads to a more accurate realization of the scenario, leading to outcomes that closely resemble real-world conditions. The results show the substantial impact of the geometrical setup on the distribution of TR, which emphasizes the need to integrate TR into ISAC-enabled V2V channel models.