How Large Language Models Empower the Analysis of Online Public Engagement for Mega Infrastructure Projects: Cases in Hong Kong

IF 4.6 3区 管理学 Q1 BUSINESS
Ming Wang;Ruiyang Ma;Geoffrey Qiping Shen;Jin Xue
{"title":"How Large Language Models Empower the Analysis of Online Public Engagement for Mega Infrastructure Projects: Cases in Hong Kong","authors":"Ming Wang;Ruiyang Ma;Geoffrey Qiping Shen;Jin Xue","doi":"10.1109/TEM.2025.3553595","DOIUrl":null,"url":null,"abstract":"Mega infrastructure projects (MIPs) have profound societal impacts, and public engagement plays a crucial role in their success. The rise of social media enables the dynamic analysis of public opinions, aiding decision-makers in addressing public concerns. This study introduces a networking, parsing, retrieval, and mapping approach that innovatively leverages large language models (LLMs) for massive text parsing and social network analysis. Using data from Hong Kong's nine MIP topics, this study identifies influencers and examines public and influencer engagement across project lifecycles. The findings and constructed managerial maps reveal the hidden dynamics of involvement and interaction across different project event types, enabling a prioritized management method. The novel LLM-driven framework offers decision-makers actionable insights to comprehensively optimize online public communication and engagement strategies for MIPs.","PeriodicalId":55009,"journal":{"name":"IEEE Transactions on Engineering Management","volume":"72 ","pages":"1262-1280"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Engineering Management","FirstCategoryId":"91","ListUrlMain":"https://ieeexplore.ieee.org/document/10938235/","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Mega infrastructure projects (MIPs) have profound societal impacts, and public engagement plays a crucial role in their success. The rise of social media enables the dynamic analysis of public opinions, aiding decision-makers in addressing public concerns. This study introduces a networking, parsing, retrieval, and mapping approach that innovatively leverages large language models (LLMs) for massive text parsing and social network analysis. Using data from Hong Kong's nine MIP topics, this study identifies influencers and examines public and influencer engagement across project lifecycles. The findings and constructed managerial maps reveal the hidden dynamics of involvement and interaction across different project event types, enabling a prioritized management method. The novel LLM-driven framework offers decision-makers actionable insights to comprehensively optimize online public communication and engagement strategies for MIPs.
大型语言模型如何帮助分析大型基建项目的在线公众参与:香港案例
大型基础设施项目具有深远的社会影响,公众参与对其成功起着至关重要的作用。社交媒体的兴起使得对民意的动态分析成为可能,帮助决策者解决公众关注的问题。本研究介绍了一种网络、解析、检索和映射方法,该方法创新性地利用大型语言模型(llm)进行大规模文本解析和社会网络分析。本研究使用了香港九个MIP主题的数据,确定了影响者,并检查了整个项目生命周期中公众和影响者的参与情况。研究结果和构建的管理地图揭示了不同项目事件类型之间参与和交互的隐藏动态,从而实现了优先级管理方法。新的llm驱动的框架为决策者提供了可操作的见解,以全面优化在线公共沟通和参与策略的mip。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Engineering Management
IEEE Transactions on Engineering Management 管理科学-工程:工业
CiteScore
10.30
自引率
19.00%
发文量
604
审稿时长
5.3 months
期刊介绍: Management of technical functions such as research, development, and engineering in industry, government, university, and other settings. Emphasis is on studies carried on within an organization to help in decision making or policy formation for RD&E.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信