Assessing carbon storage dynamics in an ecological civilization demonstration zone amid rapid urbanization: A multi-scenario study of Guizhou Province, China
{"title":"Assessing carbon storage dynamics in an ecological civilization demonstration zone amid rapid urbanization: A multi-scenario study of Guizhou Province, China","authors":"Rui Chen , Xuehai Fei , Jingyu Zhu , Weiduo Chen , Haiqiang Du , Yingqian Huang , Yi Shen , Yong Zhang , Aping Niu , Peng Xu","doi":"10.1016/j.resenv.2025.100223","DOIUrl":null,"url":null,"abstract":"<div><div>Effective management of terrestrial ecosystems is crucial for mitigating climate change, especially in regions like Guizhou Province, where significant carbon sequestration potential is challenged by urbanization and ecological initiatives. This study simulates the spatiotemporal dynamics of carbon storage in Guizhou under multiple land use and land cover (LULC) scenarios and explores their ecological and economic impacts. Specifically, LULC and ecosystem service data were applied to assess carbon storage and habitat quality from 1990 to 2020. LULC projections from 2030 to 2060, incorporating habitat quality constraints, were generated to assess carbon storage and its economic value. The results show that Guizhou’s carbon storage increased from 3423.13 Tg to 3475.42 Tg, with forest restoration increasing it by 301.62 Tg and agricultural expansion reducing it by 218.63 Tg. Projections indicate continued growth under the current trend, with 125.19 Tg of carbon sequestration valued at 11.29 billion Chinese Yuan by 2060. Ecological initiatives could accelerate these benefits, while urban expansion may limit them. Carbon storage in different sequences of development scenarios was similar, suggesting that later development strategies can partially offset earlier differences resulting from varying priorities. Nevertheless, it remains essential to consider the sequence effects on other ecosystem services and socioeconomic factors. These findings highlight the importance of ecological engineering and reveal the flexibility in balancing ecological goals with urban development, providing guidance for long-term integrated planning to achieve sustainable development. This study provides a methodological basis for carbon storage research, supporting regional land management practices in the context of carbon neutrality.</div></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"21 ","pages":"Article 100223"},"PeriodicalIF":12.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916125000350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Effective management of terrestrial ecosystems is crucial for mitigating climate change, especially in regions like Guizhou Province, where significant carbon sequestration potential is challenged by urbanization and ecological initiatives. This study simulates the spatiotemporal dynamics of carbon storage in Guizhou under multiple land use and land cover (LULC) scenarios and explores their ecological and economic impacts. Specifically, LULC and ecosystem service data were applied to assess carbon storage and habitat quality from 1990 to 2020. LULC projections from 2030 to 2060, incorporating habitat quality constraints, were generated to assess carbon storage and its economic value. The results show that Guizhou’s carbon storage increased from 3423.13 Tg to 3475.42 Tg, with forest restoration increasing it by 301.62 Tg and agricultural expansion reducing it by 218.63 Tg. Projections indicate continued growth under the current trend, with 125.19 Tg of carbon sequestration valued at 11.29 billion Chinese Yuan by 2060. Ecological initiatives could accelerate these benefits, while urban expansion may limit them. Carbon storage in different sequences of development scenarios was similar, suggesting that later development strategies can partially offset earlier differences resulting from varying priorities. Nevertheless, it remains essential to consider the sequence effects on other ecosystem services and socioeconomic factors. These findings highlight the importance of ecological engineering and reveal the flexibility in balancing ecological goals with urban development, providing guidance for long-term integrated planning to achieve sustainable development. This study provides a methodological basis for carbon storage research, supporting regional land management practices in the context of carbon neutrality.