Genome-Wide DNA Methylation Markers Associated With Metabolic Liver Cancer

Samuel O. Antwi , Ampem Darko Jnr. Siaw , Sebastian M. Armasu , Jacob A. Frank , Irene K. Yan , Fowsiyo Y. Ahmed , Laura Izquierdo-Sanchez , Loreto Boix , Angela Rojas , Jesus M. Banales , Maria Reig , Per Stål , Manuel Romero Gómez , Kirk J. Wangensteen , Amit G. Singal , Lewis R. Roberts , Tushar Patel
{"title":"Genome-Wide DNA Methylation Markers Associated With Metabolic Liver Cancer","authors":"Samuel O. Antwi ,&nbsp;Ampem Darko Jnr. Siaw ,&nbsp;Sebastian M. Armasu ,&nbsp;Jacob A. Frank ,&nbsp;Irene K. Yan ,&nbsp;Fowsiyo Y. Ahmed ,&nbsp;Laura Izquierdo-Sanchez ,&nbsp;Loreto Boix ,&nbsp;Angela Rojas ,&nbsp;Jesus M. Banales ,&nbsp;Maria Reig ,&nbsp;Per Stål ,&nbsp;Manuel Romero Gómez ,&nbsp;Kirk J. Wangensteen ,&nbsp;Amit G. Singal ,&nbsp;Lewis R. Roberts ,&nbsp;Tushar Patel","doi":"10.1016/j.gastha.2025.100621","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Aims</h3><div>Metabolic liver disease is the fastest-rising cause of hepatocellular carcinoma (HCC), but the underlying molecular processes that drive HCC development in the setting of metabolic perturbations are unclear. We investigated the role of aberrant DNA methylation in metabolic HCC development in a multicenter international study.</div></div><div><h3>Methods</h3><div>We used a case-control design, frequency-matched on age, sex, and study site. Genome-wide profiling of peripheral blood leukocyte DNA was performed using the 850k EPIC array. The study sample was split 80% and 20% for training and validation. Cell type proportions were estimated from the methylation data. Differential methylation analysis was performed adjusting for cell type, generating area under the receiver-operating characteristic curves (AUC-ROC).</div></div><div><h3>Results</h3><div>We enrolled 272 metabolic HCC patients and 316 control patients with metabolic liver disease from 6 sites. Fifty-five differentially methylated CpGs were identified; 33 hypermethylated and 22 hypomethylated in cases vs controls. The panel of 55 CpGs discriminated between the cases and controls with AUC = 0.79 (95% confidence interval [CI] = 0.71–0.87), sensitivity = 0.77 (95% CI = 0.66–0.89), and specificity = 0.74 (95% CI = 0.64–0.85). The 55-CpG classifier panel performed better than a base model that comprised age, sex, race, and diabetes mellitus (AUC = 0.65, 95% CI = 0.55–0.75; sensitivity = 0.62, 95% CI = 0.49–0.75; and specificity = 0.64, 95% CI = 0.52–0.75). A multifactorial model that combined the 55 CpGs with age, sex, race, and diabetes yielded AUC = 0.78 (95% CI = 0.70–0.86), sensitivity = 0.81 (95% CI = 0.71–0.92), and specificity = 0.67 (95% CI = 0.55–0.78).</div></div><div><h3>Conclusion</h3><div>A panel of 55 blood leukocyte DNA methylation markers differentiates patients with metabolic HCC from control patients with benign metabolic liver disease, with a slightly higher sensitivity when combined with demographic and clinical information.</div></div>","PeriodicalId":73130,"journal":{"name":"Gastro hep advances","volume":"4 5","pages":"Article 100621"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastro hep advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772572325000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Aims

Metabolic liver disease is the fastest-rising cause of hepatocellular carcinoma (HCC), but the underlying molecular processes that drive HCC development in the setting of metabolic perturbations are unclear. We investigated the role of aberrant DNA methylation in metabolic HCC development in a multicenter international study.

Methods

We used a case-control design, frequency-matched on age, sex, and study site. Genome-wide profiling of peripheral blood leukocyte DNA was performed using the 850k EPIC array. The study sample was split 80% and 20% for training and validation. Cell type proportions were estimated from the methylation data. Differential methylation analysis was performed adjusting for cell type, generating area under the receiver-operating characteristic curves (AUC-ROC).

Results

We enrolled 272 metabolic HCC patients and 316 control patients with metabolic liver disease from 6 sites. Fifty-five differentially methylated CpGs were identified; 33 hypermethylated and 22 hypomethylated in cases vs controls. The panel of 55 CpGs discriminated between the cases and controls with AUC = 0.79 (95% confidence interval [CI] = 0.71–0.87), sensitivity = 0.77 (95% CI = 0.66–0.89), and specificity = 0.74 (95% CI = 0.64–0.85). The 55-CpG classifier panel performed better than a base model that comprised age, sex, race, and diabetes mellitus (AUC = 0.65, 95% CI = 0.55–0.75; sensitivity = 0.62, 95% CI = 0.49–0.75; and specificity = 0.64, 95% CI = 0.52–0.75). A multifactorial model that combined the 55 CpGs with age, sex, race, and diabetes yielded AUC = 0.78 (95% CI = 0.70–0.86), sensitivity = 0.81 (95% CI = 0.71–0.92), and specificity = 0.67 (95% CI = 0.55–0.78).

Conclusion

A panel of 55 blood leukocyte DNA methylation markers differentiates patients with metabolic HCC from control patients with benign metabolic liver disease, with a slightly higher sensitivity when combined with demographic and clinical information.

Abstract Image

与代谢性肝癌相关的全基因组DNA甲基化标记
背景和目的代谢性肝病是肝细胞癌(HCC)发病率上升最快的原因,但在代谢紊乱的背景下,驱动HCC发展的潜在分子过程尚不清楚。我们在一项多中心国际研究中研究了异常DNA甲基化在代谢性HCC发展中的作用。方法采用病例对照设计,频率匹配年龄、性别和研究地点。使用850k EPIC阵列对外周血白细胞DNA进行全基因组分析。研究样本分为80%和20%进行训练和验证。根据甲基化数据估计细胞类型比例。根据细胞类型进行差异甲基化分析,在受体工作特征曲线(AUC-ROC)下产生区域。结果我们从6个地点纳入272例代谢性HCC患者和316例代谢性肝病对照患者。鉴定出55个差异甲基化CpGs;与对照组相比,33例高甲基化,22例低甲基化。55个cpg组区分病例和对照组的AUC = 0.79(95%可信区间[CI] = 0.71-0.87),敏感性= 0.77 (95% CI = 0.66-0.89),特异性= 0.74 (95% CI = 0.64-0.85)。55-CpG分类器面板优于包含年龄、性别、种族和糖尿病的基础模型(AUC = 0.65, 95% CI = 0.55-0.75;灵敏度= 0.62,95% CI = 0.49-0.75;特异性= 0.64,95% CI = 0.52-0.75)。将55个CpGs与年龄、性别、种族和糖尿病相结合的多因子模型得出AUC = 0.78 (95% CI = 0.70-0.86),敏感性= 0.81 (95% CI = 0.71-0.92),特异性= 0.67 (95% CI = 0.55-0.78)。结论55个血液白细胞DNA甲基化标志物可将代谢性HCC患者与良性代谢性肝病对照患者区分开来,结合人口统计学和临床信息,其敏感性略高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gastro hep advances
Gastro hep advances Gastroenterology
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信