Ji-Yu Xie , Yi Zhang , Wei Shen , Liying Wu , Quanhao Yu , Zhen Lyu , Liangyuan Song , Rui Yang , Shuyi Ning , Wenwen Duan , Ying Li , Yimeng Liu , Xuemin Wang , Liping Chen , Jie Weng , Yonglan Du , Xiao Li , Taicheng Huang , Hailin Ma , Quansheng Gao , Ti-Fei Yuan
{"title":"Tracking neural activity patterns during rapid high-altitude transitions","authors":"Ji-Yu Xie , Yi Zhang , Wei Shen , Liying Wu , Quanhao Yu , Zhen Lyu , Liangyuan Song , Rui Yang , Shuyi Ning , Wenwen Duan , Ying Li , Yimeng Liu , Xuemin Wang , Liping Chen , Jie Weng , Yonglan Du , Xiao Li , Taicheng Huang , Hailin Ma , Quansheng Gao , Ti-Fei Yuan","doi":"10.1016/j.neuroimage.2025.121197","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid adaptation to dynamic changes in the environment is critical for human survival. Extensive studies have observed human behavior and brain activity in a stable environment, but there is still a lack of understanding of how our brain's functional activity drives behavioral changes when the natural environment changes. Here, we used a virtual environment platform named the hypobaric hypoxia chamber to investigate how human neural oscillations and related behaviors are affected by changes in barometric pressure and oxygen levels at different altitudes. We found that physiological compensations occurred in the hypobaric hypoxic environment followed by an increase in altitude, resulting in faster response times in working memory tasks. High-density EEG analysis revealed a significant decrease in the alpha band at high altitudes, while delta band activity gradually increased with altitude. Moreover, a predictive model based on differences in brain regions across frequency bands identified the left supramarginal gyrus and left lingual gyrus as two hub regions strongly associated with hypoxia-related behavioral changes, and activations in the pallidum and amygdala could effectively decode the specific altitude at which humans are located. Our study underscores the potential of hypobaric hypoxia chambers as a powerful tool for dynamic high-altitude research and provides novel insights into how altitude-related changes shape human cognition and brain activity.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"311 ","pages":"Article 121197"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925002009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid adaptation to dynamic changes in the environment is critical for human survival. Extensive studies have observed human behavior and brain activity in a stable environment, but there is still a lack of understanding of how our brain's functional activity drives behavioral changes when the natural environment changes. Here, we used a virtual environment platform named the hypobaric hypoxia chamber to investigate how human neural oscillations and related behaviors are affected by changes in barometric pressure and oxygen levels at different altitudes. We found that physiological compensations occurred in the hypobaric hypoxic environment followed by an increase in altitude, resulting in faster response times in working memory tasks. High-density EEG analysis revealed a significant decrease in the alpha band at high altitudes, while delta band activity gradually increased with altitude. Moreover, a predictive model based on differences in brain regions across frequency bands identified the left supramarginal gyrus and left lingual gyrus as two hub regions strongly associated with hypoxia-related behavioral changes, and activations in the pallidum and amygdala could effectively decode the specific altitude at which humans are located. Our study underscores the potential of hypobaric hypoxia chambers as a powerful tool for dynamic high-altitude research and provides novel insights into how altitude-related changes shape human cognition and brain activity.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.