NaDyNet: A toolbox for dynamic network analysis of naturalistic stimuli

IF 4.7 2区 医学 Q1 NEUROIMAGING
Junjie Yang , Zhe Hu , Junjing Li , Xiaolin Guo , Xiaowei Gao , Jiaxuan Liu , Yaling Wang , Zhiheng Qu , Wanchun Li , Zhongqi Li , Wanjing Li , Yien Huang , Jiali Chen , Hao Wen , Binke Yuan
{"title":"NaDyNet: A toolbox for dynamic network analysis of naturalistic stimuli","authors":"Junjie Yang ,&nbsp;Zhe Hu ,&nbsp;Junjing Li ,&nbsp;Xiaolin Guo ,&nbsp;Xiaowei Gao ,&nbsp;Jiaxuan Liu ,&nbsp;Yaling Wang ,&nbsp;Zhiheng Qu ,&nbsp;Wanchun Li ,&nbsp;Zhongqi Li ,&nbsp;Wanjing Li ,&nbsp;Yien Huang ,&nbsp;Jiali Chen ,&nbsp;Hao Wen ,&nbsp;Binke Yuan","doi":"10.1016/j.neuroimage.2025.121203","DOIUrl":null,"url":null,"abstract":"<div><div>Experiments with naturalistic stimuli (e.g., listening to stories or watching movies) are emerging paradigms in brain function research. The content of naturalistic stimuli is rich and continuous. The fMRI signals of naturalistic stimuli are complex and include different components. A major challenge is isolate the stimuli-induced signals while simultaneously tracking the brain's responses to these stimuli in real-time. To this end, we have developed a user-friendly graphical interface toolbox called NaDyNet (Naturalistic Dynamic Network Toolbox), which integrates existing dynamic brain network analysis methods and their improved versions. The main features of NaDyNet are: 1) extracting signals of interest from naturalistic fMRI signals; 2) incorporating six commonly used dynamic analysis methods and three static analysis methods; 3) improved versions of these dynamic methods by adopting inter-subject analysis to eliminate the effects of non-interest signals; 4) performing K-means clustering analysis to identify temporally reoccurring states along with their temporal and spatial attributes; 5) Visualization of spatiotemporal results. We then introduced the rationale for incorporating inter-subject analysis to improve existing dynamic brain network analysis methods and presented examples by analyzing naturalistic fMRI data. We hope that this toolbox will promote the development of naturalistic neuroscience. The toolbox is available at <span><span>https://github.com/yuanbinke/Naturalistic-Dynamic-Network-Toolbox</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"311 ","pages":"Article 121203"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105381192500206X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Experiments with naturalistic stimuli (e.g., listening to stories or watching movies) are emerging paradigms in brain function research. The content of naturalistic stimuli is rich and continuous. The fMRI signals of naturalistic stimuli are complex and include different components. A major challenge is isolate the stimuli-induced signals while simultaneously tracking the brain's responses to these stimuli in real-time. To this end, we have developed a user-friendly graphical interface toolbox called NaDyNet (Naturalistic Dynamic Network Toolbox), which integrates existing dynamic brain network analysis methods and their improved versions. The main features of NaDyNet are: 1) extracting signals of interest from naturalistic fMRI signals; 2) incorporating six commonly used dynamic analysis methods and three static analysis methods; 3) improved versions of these dynamic methods by adopting inter-subject analysis to eliminate the effects of non-interest signals; 4) performing K-means clustering analysis to identify temporally reoccurring states along with their temporal and spatial attributes; 5) Visualization of spatiotemporal results. We then introduced the rationale for incorporating inter-subject analysis to improve existing dynamic brain network analysis methods and presented examples by analyzing naturalistic fMRI data. We hope that this toolbox will promote the development of naturalistic neuroscience. The toolbox is available at https://github.com/yuanbinke/Naturalistic-Dynamic-Network-Toolbox.
一个对自然刺激进行动态网络分析的工具箱
自然刺激实验(例如,听故事或看电影)是脑功能研究的新兴范例。自然刺激的内容是丰富而连续的。自然刺激的fMRI信号是复杂的,包含不同的成分。一个主要的挑战是分离刺激引起的信号,同时实时跟踪大脑对这些刺激的反应。为此,我们开发了一个用户友好的图形界面工具箱,称为NaDyNet (Naturalistic Dynamic Network toolbox),它集成了现有的动态脑网络分析方法及其改进版本。NaDyNet的主要特点是:1)从自然的fMRI信号中提取感兴趣的信号;2)结合6种常用的动态分析方法和3种静态分析方法;3)对这些动态方法进行改进,采用学科间分析消除非兴趣信号的影响;4)进行k均值聚类分析,识别时间重复出现的状态及其时空属性;5)时空结果可视化。然后,我们介绍了采用学科间分析来改进现有动态脑网络分析方法的基本原理,并通过分析自然功能磁共振成像数据给出了示例。我们希望这个工具箱能促进自然神经科学的发展。该工具箱可在https://github.com/yuanbinke/Naturalistic-Dynamic-Network-Toolbox上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信