Thermal reduction synthesis approach of reduced graphene oxide for the preparation of a label-free and prompt immuno sensing of Salmonella enterica via electrochemical techniques
{"title":"Thermal reduction synthesis approach of reduced graphene oxide for the preparation of a label-free and prompt immuno sensing of Salmonella enterica via electrochemical techniques","authors":"Nahid Rehman , Ashutosh Pandey , Anjana Pandey","doi":"10.1016/j.sbsr.2025.100789","DOIUrl":null,"url":null,"abstract":"<div><div>This work comprises an immunosensor fabrication decorated with reduced graphene oxide (rGO) onto Indium tin oxide (ITO) coated electrodes to detect <em>Salmonella enterica</em> antigen. The rGO was synthesized with a modified Hummer technique and characterized via UV, XRD, FTIR, RAMAN and SEM techniques. The synthesized rGO was optimized at different concentrations to develop an immunosensor. An EDC-NHS interaction immobilized the monoclonal antibody against the selected antigen. Electrochemical techniques such as electrochemical impedance spectroscopy and cyclic voltammetry were deployed to characterize the modified electrodes in 5 mM Zobell's solution, followed by a differential pulse voltammetry analysis for sensor validation. The fabricated sensor has a 44 CFU/mL detection limit (LoD) and a 135 CFU/mL quantification limit (LoQ) with a linear range of 10<sup>1</sup>–10<sup>7</sup> CFU/mL. This proposed immunosensor can be applied to any sample containing traces of <em>Salmonella enterica.</em></div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"48 ","pages":"Article 100789"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425000558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work comprises an immunosensor fabrication decorated with reduced graphene oxide (rGO) onto Indium tin oxide (ITO) coated electrodes to detect Salmonella enterica antigen. The rGO was synthesized with a modified Hummer technique and characterized via UV, XRD, FTIR, RAMAN and SEM techniques. The synthesized rGO was optimized at different concentrations to develop an immunosensor. An EDC-NHS interaction immobilized the monoclonal antibody against the selected antigen. Electrochemical techniques such as electrochemical impedance spectroscopy and cyclic voltammetry were deployed to characterize the modified electrodes in 5 mM Zobell's solution, followed by a differential pulse voltammetry analysis for sensor validation. The fabricated sensor has a 44 CFU/mL detection limit (LoD) and a 135 CFU/mL quantification limit (LoQ) with a linear range of 101–107 CFU/mL. This proposed immunosensor can be applied to any sample containing traces of Salmonella enterica.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.