Insight into structural, Opto-electronic and elastic properties of lead-free double perovskites Cs2TlInX6 (X = Cl, Br and I) for optoelectronic applications: A first principles calculations
Nimra Ehsan , Tasawer Shahzad Ahmad , Mian HR Mahmood , Salhah Hamed Alrefaee , Naseem Akhter , Tatyana Orlova , Vineet Tirth , Ali Algahtani , Amnah Mohammed Alsuhaibani , Moamen S. Refat , Abid Zaman
{"title":"Insight into structural, Opto-electronic and elastic properties of lead-free double perovskites Cs2TlInX6 (X = Cl, Br and I) for optoelectronic applications: A first principles calculations","authors":"Nimra Ehsan , Tasawer Shahzad Ahmad , Mian HR Mahmood , Salhah Hamed Alrefaee , Naseem Akhter , Tatyana Orlova , Vineet Tirth , Ali Algahtani , Amnah Mohammed Alsuhaibani , Moamen S. Refat , Abid Zaman","doi":"10.1016/j.elecom.2025.107930","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, lead-free double perovskites have gained attention due to their potential in optoelectronics. This study investigates the structural, electronic, mechanical and optical properties of Cs<sub>2</sub>TlInX<sub>6</sub> (X = Cl, Br, I) using first-principles calculations. Structural optimizations reveal increasing lattice constants (11.05 Å −12.28 Å) with larger anions, while band structure analysis indicates indirect band gaps of 3.52 eV, 2.49 eV and 1.45 eV for Cl, Br, and I variants suitable for visible to ultra-visible applications. Mechanical analysis confirms structural stability with Cs<sub>2</sub>TlInCl<sub>6</sub> exhibiting the highest bulk modulus (28.3 GPa) and Cs<sub>2</sub>TlInI<sub>6</sub> demonstrating enhanced flexibility. Optical assessments show significant light absorption with Cs<sub>2</sub>TlInI<sub>6</sub> possessing the highest dielectric constant (4.05). These findings highlight the potential of Cs<sub>2</sub>TlInX<sub>6</sub> as stable, tunable, and highly absorptive materials, making them promising candidates for next-generation photovoltaic and optoelectronic applications.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"176 ","pages":"Article 107930"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000694","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, lead-free double perovskites have gained attention due to their potential in optoelectronics. This study investigates the structural, electronic, mechanical and optical properties of Cs2TlInX6 (X = Cl, Br, I) using first-principles calculations. Structural optimizations reveal increasing lattice constants (11.05 Å −12.28 Å) with larger anions, while band structure analysis indicates indirect band gaps of 3.52 eV, 2.49 eV and 1.45 eV for Cl, Br, and I variants suitable for visible to ultra-visible applications. Mechanical analysis confirms structural stability with Cs2TlInCl6 exhibiting the highest bulk modulus (28.3 GPa) and Cs2TlInI6 demonstrating enhanced flexibility. Optical assessments show significant light absorption with Cs2TlInI6 possessing the highest dielectric constant (4.05). These findings highlight the potential of Cs2TlInX6 as stable, tunable, and highly absorptive materials, making them promising candidates for next-generation photovoltaic and optoelectronic applications.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.