A simple and effective catalyst recovery protocol for H2-PEMFCs

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Marc Ayoub , Rohit Rajendran Menon , Simon Thiele , Matthew Brodt
{"title":"A simple and effective catalyst recovery protocol for H2-PEMFCs","authors":"Marc Ayoub ,&nbsp;Rohit Rajendran Menon ,&nbsp;Simon Thiele ,&nbsp;Matthew Brodt","doi":"10.1016/j.elecom.2025.107929","DOIUrl":null,"url":null,"abstract":"<div><div>Catalyst degradation in the cathode electrode for H<sub>2</sub>-PEM (hydrogen proton-exchange membrane) fuel cells is a crucial topic to tackle to achieve high durability and efficiency. Despite ongoing research, a concurrently fast, easy-to-adapt, and effective recovery protocol is still missing. In this study, we report a fast and easy-to-adapt recovery protocol that significantly mitigates the negative effects associated with catalyst degradation for the cathode electrode in H<sub>2</sub>-PEMFCs. Following accelerated stress tests (AST) of 30,000-cycles, membrane-electrode assemblies (MEAs) using our new recovery protocol exhibit remarkable higher end-of-life performance compared to similar MEAs subjected to the same AST but utilizing the DOE-defined recovery protocol. The end-of-life differences for the new recovery protocol are over 100 % increase in power density at 0.6 V and around 26 % increase at peak power density. By analyzing performance, the Tafel slope, the electrochemical surface area (ECSA), and impedance data, the improvements are traced back to better catalyst recovery and thus improved performance at end-of-life.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"176 ","pages":"Article 107929"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000682","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Catalyst degradation in the cathode electrode for H2-PEM (hydrogen proton-exchange membrane) fuel cells is a crucial topic to tackle to achieve high durability and efficiency. Despite ongoing research, a concurrently fast, easy-to-adapt, and effective recovery protocol is still missing. In this study, we report a fast and easy-to-adapt recovery protocol that significantly mitigates the negative effects associated with catalyst degradation for the cathode electrode in H2-PEMFCs. Following accelerated stress tests (AST) of 30,000-cycles, membrane-electrode assemblies (MEAs) using our new recovery protocol exhibit remarkable higher end-of-life performance compared to similar MEAs subjected to the same AST but utilizing the DOE-defined recovery protocol. The end-of-life differences for the new recovery protocol are over 100 % increase in power density at 0.6 V and around 26 % increase at peak power density. By analyzing performance, the Tafel slope, the electrochemical surface area (ECSA), and impedance data, the improvements are traced back to better catalyst recovery and thus improved performance at end-of-life.
简单有效的 H2-PEMFC 催化剂回收方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信