Deciphering the mechanism of Sang Ju Yin in ameliorating acute lung injury: An integrated systems pharmacology approach encompassing chemical composition analysis, network pharmacology, metabolomics, molecular docking and molecular biology
Ruinan REN , Fang WANG , Guoan ZHAO , Qi YU , Jinling ZHANG , Wenbao WANG , Tianyang WANG , Song LIN , Yan LIN
{"title":"Deciphering the mechanism of Sang Ju Yin in ameliorating acute lung injury: An integrated systems pharmacology approach encompassing chemical composition analysis, network pharmacology, metabolomics, molecular docking and molecular biology","authors":"Ruinan REN , Fang WANG , Guoan ZHAO , Qi YU , Jinling ZHANG , Wenbao WANG , Tianyang WANG , Song LIN , Yan LIN","doi":"10.1016/j.cjac.2025.100527","DOIUrl":null,"url":null,"abstract":"<div><div>Sang Ju Yin (SJY), a renowned traditional Chinese medicinal formula, has been widely utilized in acute lung injury (ALI) management. Yet, its underlying therapeutic mechanisms remain obscure. This study devised an innovative and integrated methodology, merging advanced chemical analysis with biological assays, to elucidate SJY's action mechanism in ALI treatment. Initially, UFLC-ESI-QTOF-MS was employed to precisely analyze SJY's chemical constituents. Subsequently, network pharmacology predicted potential targets and signaling pathways for SJY's beneficial effects. In parallel, pharmacodynamic evaluation was performed on ALI rats. Utilizing LC-MS and <sup>1</sup>H NMR metabolomics techniques with an innovative data fusion strategy, potential biomarkers and perturbed metabolic pathways were identified. Crucially, integrating network pharmacology and metabolomics insights yielded a holistic understanding of the mechanism. Finally, verification experiments involving molecular docking, Western Blot, and qRT-PCR were carried out. Notably, potential key bioactive components including apigenin were identified for SJY's anti-ALI activity. Marked perturbations in representative pathways such as arachidonic acid (AA) metabolism and PI3K-Akt pathway were obtained after SJY administration. Furthermore, integrated data spotlighted PTGS2, PLA2, and AA metabolism as pivotal, linking predicted targets and metabolic alterations for SJY in ALI treatment. In summary, this study uncovers SJY's mechanism in ALI treatment, presenting an advanced interdisciplinary framework. It deepens our comprehension of traditional Chinese medicine's role in ALI, setting a new standard for research at the chemistry-pharmacology interface.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 5","pages":"Article 100527"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872204025000374","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sang Ju Yin (SJY), a renowned traditional Chinese medicinal formula, has been widely utilized in acute lung injury (ALI) management. Yet, its underlying therapeutic mechanisms remain obscure. This study devised an innovative and integrated methodology, merging advanced chemical analysis with biological assays, to elucidate SJY's action mechanism in ALI treatment. Initially, UFLC-ESI-QTOF-MS was employed to precisely analyze SJY's chemical constituents. Subsequently, network pharmacology predicted potential targets and signaling pathways for SJY's beneficial effects. In parallel, pharmacodynamic evaluation was performed on ALI rats. Utilizing LC-MS and 1H NMR metabolomics techniques with an innovative data fusion strategy, potential biomarkers and perturbed metabolic pathways were identified. Crucially, integrating network pharmacology and metabolomics insights yielded a holistic understanding of the mechanism. Finally, verification experiments involving molecular docking, Western Blot, and qRT-PCR were carried out. Notably, potential key bioactive components including apigenin were identified for SJY's anti-ALI activity. Marked perturbations in representative pathways such as arachidonic acid (AA) metabolism and PI3K-Akt pathway were obtained after SJY administration. Furthermore, integrated data spotlighted PTGS2, PLA2, and AA metabolism as pivotal, linking predicted targets and metabolic alterations for SJY in ALI treatment. In summary, this study uncovers SJY's mechanism in ALI treatment, presenting an advanced interdisciplinary framework. It deepens our comprehension of traditional Chinese medicine's role in ALI, setting a new standard for research at the chemistry-pharmacology interface.
期刊介绍:
Chinese Journal of Analytical Chemistry(CJAC) is an academic journal of analytical chemistry established in 1972 and sponsored by the Chinese Chemical Society and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Its objectives are to report the original scientific research achievements and review the recent development of analytical chemistry in all areas. The journal sets up 5 columns including Research Papers, Research Notes, Experimental Technique and Instrument, Review and Progress and Summary Accounts. The journal published monthly in Chinese language. A detailed abstract, keywords and the titles of figures and tables are provided in English, except column of Summary Accounts. Prof. Wang Erkang, an outstanding analytical chemist, academician of Chinese Academy of Sciences & Third World Academy of Sciences, holds the post of the Editor-in-chief.