On average sizes and enumeration of minimal edge covers

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
John Engbers , Aysel Erey
{"title":"On average sizes and enumeration of minimal edge covers","authors":"John Engbers ,&nbsp;Aysel Erey","doi":"10.1016/j.dam.2025.04.022","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>edge cover</em> <span><math><mi>M</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a subset of edges such that every vertex of <span><math><mi>G</mi></math></span> is an end-vertex of some edge in <span><math><mi>M</mi></math></span>. An edge cover is called a <em>minimal edge cover</em> if it does not properly contain another edge cover. Let <span><math><mrow><mo>mec</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of minimal edge covers of <span><math><mi>G</mi></math></span>, and let <span><math><mrow><msub><mrow><mo>mec</mo></mrow><mrow><mi>av</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the average size of a minimal edge cover of <span><math><mi>G</mi></math></span>. We consider the extremal values of <span><math><mrow><mo>mec</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mo>mec</mo></mrow><mrow><mi>av</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> is restricted to various families of graphs. In particular, we determine the graphs <span><math><mi>G</mi></math></span> which minimize <span><math><mrow><mo>mec</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> among all graphs with fixed order, and among the family of 2-regular graphs with fixed order. We also determine the graphs which maximize <span><math><mrow><mo>mec</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> within the families of trees, of unicyclic graphs with fixed order, and of 2-regular graphs with a fixed order. Finally, we provide a characterization of all extremal graphs for the maximum and minimum values of <span><math><mrow><msub><mrow><mo>mec</mo></mrow><mrow><mi>av</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> among all graphs <span><math><mi>G</mi></math></span> with fixed order.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 148-164"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001908","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An edge cover M of a graph G is a subset of edges such that every vertex of G is an end-vertex of some edge in M. An edge cover is called a minimal edge cover if it does not properly contain another edge cover. Let mec(G) be the number of minimal edge covers of G, and let mecav(G) be the average size of a minimal edge cover of G. We consider the extremal values of mec(G) and mecav(G) when G is restricted to various families of graphs. In particular, we determine the graphs G which minimize mec(G) among all graphs with fixed order, and among the family of 2-regular graphs with fixed order. We also determine the graphs which maximize mec(G) within the families of trees, of unicyclic graphs with fixed order, and of 2-regular graphs with a fixed order. Finally, we provide a characterization of all extremal graphs for the maximum and minimum values of mecav(G) among all graphs G with fixed order.
最小边缘覆盖的平均尺寸和枚举
图G的边盖M是满足G的每个顶点都是M中某条边的端顶点的边的子集。如果一个边盖没有适当地包含另一个边盖,则称为最小边盖。设mec(G)为G的最小边盖的个数,设mecav(G)为G的最小边盖的平均大小。我们考虑当G被限制于各种图族时mec(G)和mecav(G)的极值。特别地,我们在所有定阶图中,以及在2-正则图族中,确定了使mec(G)最小的图G。我们还确定了树族、定阶单环图族和定阶2正则图族中mec(G)最大的图。最后,我们给出了在所有定阶图G中mecav(G)的最大值和最小值的所有极值图的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信