Detonation product analysis and the paradoxical performance mechanism of TKX-50: High detonation velocity with low metal acceleration

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY
Kaiyuan Tan , Yaqi Zhao , Qin Liu , Lixiao Hao , Yushi Wen , Chunliang Ji , Sha Yang , Haoxu Wang , Luchuan Jia , Jiahui Liu , Zhuoping Duan , Yong Han , Fenglei Huang
{"title":"Detonation product analysis and the paradoxical performance mechanism of TKX-50: High detonation velocity with low metal acceleration","authors":"Kaiyuan Tan ,&nbsp;Yaqi Zhao ,&nbsp;Qin Liu ,&nbsp;Lixiao Hao ,&nbsp;Yushi Wen ,&nbsp;Chunliang Ji ,&nbsp;Sha Yang ,&nbsp;Haoxu Wang ,&nbsp;Luchuan Jia ,&nbsp;Jiahui Liu ,&nbsp;Zhuoping Duan ,&nbsp;Yong Han ,&nbsp;Fenglei Huang","doi":"10.1016/j.dt.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the paradoxical detonation behavior of TKX-50, a nitrogen-rich energetic material, exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX. Through experimental measurements and theoretical calculations, we propose a novel three-factor competition mechanism to explain this phenomenon. TKX-50-based PBX formulations achieved detonation velocities up to 9100 m/s, surpassing HMX-based counterparts. However, cylinder expansion tests revealed a 15% reduction in metal acceleration ability. Thermochemical measurements showed lower detonation heat for TKX-50 (4900 J/g) versus HMX (5645 J/g). Our mechanism involves: (1) compositional effects prevailing at high pressures; (2) Energy release becoming essential as pressure drops; (3) Pressure-dependent product composition evolution functioning at low pressure. VLW code calculations unveiled a \"crossover\" in Hugoniot curves, lending support to this mechanism. This study furnishes a new framework for comprehending the performance of nitrogen-rich energetic materials, with significant implications for the design and optimization of future high-energy density materials.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"46 ","pages":"Pages 255-266"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724002745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the paradoxical detonation behavior of TKX-50, a nitrogen-rich energetic material, exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX. Through experimental measurements and theoretical calculations, we propose a novel three-factor competition mechanism to explain this phenomenon. TKX-50-based PBX formulations achieved detonation velocities up to 9100 m/s, surpassing HMX-based counterparts. However, cylinder expansion tests revealed a 15% reduction in metal acceleration ability. Thermochemical measurements showed lower detonation heat for TKX-50 (4900 J/g) versus HMX (5645 J/g). Our mechanism involves: (1) compositional effects prevailing at high pressures; (2) Energy release becoming essential as pressure drops; (3) Pressure-dependent product composition evolution functioning at low pressure. VLW code calculations unveiled a "crossover" in Hugoniot curves, lending support to this mechanism. This study furnishes a new framework for comprehending the performance of nitrogen-rich energetic materials, with significant implications for the design and optimization of future high-energy density materials.

Abstract Image

TKX-50爆轰产物分析及高爆速低金属加速度的矛盾性能机理
TKX-50是一种富氮高能材料,与HMX相比,其引爆速度更高,但金属加速能力更低,本研究对TKX-50的矛盾引爆行为进行了研究。通过实验测量和理论计算,我们提出了一种新的三因素竞争机制来解释这种现象。以 TKX-50 为基础的 PBX 配方的爆速高达 9100 米/秒,超过了以 HMX 为基础的同类配方。然而,气缸膨胀试验表明,金属加速能力降低了 15%。热化学测量显示,TKX-50(4900 焦耳/克)的引爆热量低于 HMX(5645 焦耳/克)。我们的机理包括:(1) 高压下的成分效应;(2) 随着压力下降,能量释放变得至关重要;(3) 低压下与压力相关的产品成分演变。VLW 代码计算揭示了胡戈尼奥曲线的 "交叉",为这一机制提供了支持。这项研究为理解富氮高能材料的性能提供了一个新的框架,对未来高能量密度材料的设计和优化具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信