Numerical investigation on the engraving process of a pyrotechnic actuator with an improved two-phase flow model of interior ballistic

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY
Yue Li , Cong Liu , Cheng Cheng , Genghui Jiang
{"title":"Numerical investigation on the engraving process of a pyrotechnic actuator with an improved two-phase flow model of interior ballistic","authors":"Yue Li ,&nbsp;Cong Liu ,&nbsp;Cheng Cheng ,&nbsp;Genghui Jiang","doi":"10.1016/j.dt.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>By combining with an improved model on engraving process, a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators. Using computational fluid dynamics (CFD), the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated. Initially, the current model was utilized to examine the intricate, multi-dimensional flow, and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber. It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy, along with the combined effect of the propellant motion, are what create the pressure oscillation within the chamber. Additionally, a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion, including pyrotechnic charge, pyrotechnic particle size, and chamber structural dimension. The findings show that decreasing the pyrotechnic charge will lower the terminal velocity, while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber. The pyrotechnic particle size has minimal bearing on the terminal velocity. The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"46 ","pages":"Pages 120-132"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724002599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By combining with an improved model on engraving process, a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators. Using computational fluid dynamics (CFD), the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated. Initially, the current model was utilized to examine the intricate, multi-dimensional flow, and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber. It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy, along with the combined effect of the propellant motion, are what create the pressure oscillation within the chamber. Additionally, a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion, including pyrotechnic charge, pyrotechnic particle size, and chamber structural dimension. The findings show that decreasing the pyrotechnic charge will lower the terminal velocity, while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber. The pyrotechnic particle size has minimal bearing on the terminal velocity. The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信