A novel numerical scheme for Black-Scholes PDEs modeling pricing securities

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Sachin Kumar, Srinivasan Natesan
{"title":"A novel numerical scheme for Black-Scholes PDEs modeling pricing securities","authors":"Sachin Kumar,&nbsp;Srinivasan Natesan","doi":"10.1016/j.camwa.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces an efficient numerical method for solving the Black-Scholes partial differential equation (PDE) that governs European options. The methodology employs the backward Euler scheme to discretize the time derivative and incorporates the non-symmetric interior penalty Galerkin method for handling the spatial derivatives. The study aims to determine optimal order error estimates in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and discrete energy norm. In addition, the proposed method is used to determine Greeks in option pricing. We validate the theoretical results presented in this work with numerical experiments.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"190 ","pages":"Pages 57-71"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001488","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces an efficient numerical method for solving the Black-Scholes partial differential equation (PDE) that governs European options. The methodology employs the backward Euler scheme to discretize the time derivative and incorporates the non-symmetric interior penalty Galerkin method for handling the spatial derivatives. The study aims to determine optimal order error estimates in the L2-norm and discrete energy norm. In addition, the proposed method is used to determine Greeks in option pricing. We validate the theoretical results presented in this work with numerical experiments.
Black-Scholes偏微分方程模拟证券定价的一种新的数值格式
本文介绍了一种高效的数值方法,用于求解支配欧式期权的布莱克-斯科尔斯偏微分方程(PDE)。该方法采用后向欧拉方案来离散时间导数,并结合非对称内部惩罚 Galerkin 方法来处理空间导数。研究旨在确定 L2 准则和离散能量准则中的最优阶误差估计。此外,提出的方法还用于确定期权定价中的希腊。我们通过数值实验验证了本研究提出的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信