Machine learning approach to predict prognosis and immunotherapy responses in colorectal cancer patients

hLife Pub Date : 2025-04-01 DOI:10.1016/j.hlife.2025.02.001
Zhen Liu , Dou Yu , Pengyan Xia , Shuo Wang
{"title":"Machine learning approach to predict prognosis and immunotherapy responses in colorectal cancer patients","authors":"Zhen Liu ,&nbsp;Dou Yu ,&nbsp;Pengyan Xia ,&nbsp;Shuo Wang","doi":"10.1016/j.hlife.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>The immune-related genes in the colorectal cancer (CRC) microenvironment are closely associated with patient prognosis and the efficacy of immunotherapy. In this study, a CRC risk model was established utilizing the expression profiles of immune-related genes. The risk prediction framework for CRC was created by integrating clinical and transcriptomic data through machine learning techniques. We incorporated 13 core immune-related genes (<em>IL18BP</em>, <em>RSAD2</em>, <em>G0S2</em>, <em>SIGLEC1</em>, <em>SFRP2</em>, <em>IFI44L</em>, <em>ISG20</em>, <em>IFIT1</em>, <em>OLR1</em>, <em>SAMHD1</em>, <em>HK3</em>, <em>PTAFR</em>, and <em>CSF1</em>), constructed a prognostic model and established Immune Response-related Risk Score (IRRS) model in CRC. IRRS strongly correlated with cancer staging, immune cell infiltration, immune cell activation, and the expression of genes associated with immunotherapy targets. Furthermore, this IRRS model outperformed the Tumor Immune Dysfunction and Exclusion (TIDE) tool in predicting immunotherapy response. Therefore, by integrating patient clinical and transcriptomic data and applying machine learning algorithms, we developed a predictive model with enhanced accuracy and clinical utility for risk stratification and immunotherapy response prediction in CRC patients.</div></div>","PeriodicalId":100609,"journal":{"name":"hLife","volume":"3 4","pages":"Pages 172-186"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"hLife","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949928325000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The immune-related genes in the colorectal cancer (CRC) microenvironment are closely associated with patient prognosis and the efficacy of immunotherapy. In this study, a CRC risk model was established utilizing the expression profiles of immune-related genes. The risk prediction framework for CRC was created by integrating clinical and transcriptomic data through machine learning techniques. We incorporated 13 core immune-related genes (IL18BP, RSAD2, G0S2, SIGLEC1, SFRP2, IFI44L, ISG20, IFIT1, OLR1, SAMHD1, HK3, PTAFR, and CSF1), constructed a prognostic model and established Immune Response-related Risk Score (IRRS) model in CRC. IRRS strongly correlated with cancer staging, immune cell infiltration, immune cell activation, and the expression of genes associated with immunotherapy targets. Furthermore, this IRRS model outperformed the Tumor Immune Dysfunction and Exclusion (TIDE) tool in predicting immunotherapy response. Therefore, by integrating patient clinical and transcriptomic data and applying machine learning algorithms, we developed a predictive model with enhanced accuracy and clinical utility for risk stratification and immunotherapy response prediction in CRC patients.

Abstract Image

机器学习方法预测结直肠癌患者的预后和免疫治疗反应
结直肠癌(CRC)微环境中的免疫相关基因与患者的预后和免疫疗法的疗效密切相关。本研究利用免疫相关基因的表达谱建立了一个 CRC 风险模型。通过机器学习技术整合临床和转录组数据,建立了 CRC 风险预测框架。我们纳入了13个核心免疫相关基因(IL18BP、RSAD2、G0S2、SIGLEC1、SFRP2、IFI44L、ISG20、IFIT1、OLR1、SAMHD1、HK3、PTAFR和CSF1),构建了一个预后模型,并建立了CRC免疫反应相关风险评分(IRRS)模型。IRRS 与癌症分期、免疫细胞浸润、免疫细胞活化以及免疫治疗靶点相关基因的表达密切相关。此外,该 IRRS 模型在预测免疫治疗反应方面的表现优于肿瘤免疫功能障碍和排斥(TIDE)工具。因此,通过整合患者的临床数据和转录组数据并应用机器学习算法,我们开发出了一种预测模型,该模型具有更高的准确性和临床实用性,可用于对 CRC 患者进行风险分层和免疫治疗反应预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信