Manifesting the versatile properties of the Magnesium MOS diodes for optoelectronic applications

IF 3.8 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
G. Alan Sibu , V. Balasubramani , P. Gayathri , M. Aslam Manthrammel , Mohd Shkir
{"title":"Manifesting the versatile properties of the Magnesium MOS diodes for optoelectronic applications","authors":"G. Alan Sibu ,&nbsp;V. Balasubramani ,&nbsp;P. Gayathri ,&nbsp;M. Aslam Manthrammel ,&nbsp;Mohd Shkir","doi":"10.1016/j.optmat.2025.117047","DOIUrl":null,"url":null,"abstract":"<div><div>This pioneering study explores the thermally-induced morphological and optical transformations of spray pyrolyzed Magnesium oxide (MgO) thin films, tailored for metal-oxide-semiconductor (MOS) Schottky barrier diodes. By leveraging MgO's unique attributes, including its expansive band gap, tailored surface topography, and tuneable conductivity, we harness the material's potential for cutting-edge optoelectronic applications. Utilizing the cost-effective and widely available JNSP technique, we deposit large-area thin films with unparalleled uniformity. A comprehensive characterization of the coated thin films, conducted using advanced analytical tools such as XRD, UV, FE-SEM, EDX and XPS, reveals that an optimal substrate temperature of 450 °C yields enhanced structural, morphological, and optical properties. The fabricated MOS diode, incorporating the optimized MgO thin films, exhibit superior photodiode parameters, including a reduced ideality factor of 3.81 (under light condition) and 5.05 (in dark condition), an elevated barrier height of 0.73 eV (under light condition) and 0.71 eV (in dark condition), and a diminished leakage current. Notably, these diodes demonstrate a high photosensitivity of 48.96 %, a responsivity of 27.11 mA/W, a quantum efficiency of 1.05 %, and a detectivity of 5.31 × 10<sup>−9</sup> Jones. These findings have far-reaching implications for the development of high-performance MOS Schottky barrier diode, poised to revolutionize the landscape of advanced optoelectronic and photovoltaic applications.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"164 ","pages":"Article 117047"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346725004070","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This pioneering study explores the thermally-induced morphological and optical transformations of spray pyrolyzed Magnesium oxide (MgO) thin films, tailored for metal-oxide-semiconductor (MOS) Schottky barrier diodes. By leveraging MgO's unique attributes, including its expansive band gap, tailored surface topography, and tuneable conductivity, we harness the material's potential for cutting-edge optoelectronic applications. Utilizing the cost-effective and widely available JNSP technique, we deposit large-area thin films with unparalleled uniformity. A comprehensive characterization of the coated thin films, conducted using advanced analytical tools such as XRD, UV, FE-SEM, EDX and XPS, reveals that an optimal substrate temperature of 450 °C yields enhanced structural, morphological, and optical properties. The fabricated MOS diode, incorporating the optimized MgO thin films, exhibit superior photodiode parameters, including a reduced ideality factor of 3.81 (under light condition) and 5.05 (in dark condition), an elevated barrier height of 0.73 eV (under light condition) and 0.71 eV (in dark condition), and a diminished leakage current. Notably, these diodes demonstrate a high photosensitivity of 48.96 %, a responsivity of 27.11 mA/W, a quantum efficiency of 1.05 %, and a detectivity of 5.31 × 10−9 Jones. These findings have far-reaching implications for the development of high-performance MOS Schottky barrier diode, poised to revolutionize the landscape of advanced optoelectronic and photovoltaic applications.

Abstract Image

体现了镁合金MOS二极管在光电应用中的多用途特性
这项开创性的研究探索了为金属氧化物半导体(MOS)肖特基势垒二极管量身定制的喷雾热解氧化镁(MgO)薄膜的热诱导形态学和光学转变。通过利用MgO的独特属性,包括其广阔的带隙,定制的表面形貌和可调谐的导电性,我们利用该材料在尖端光电应用中的潜力。利用具有成本效益和广泛可用的JNSP技术,我们沉积具有无与伦比的均匀性的大面积薄膜。利用先进的分析工具,如XRD, UV, FE-SEM, EDX和XPS,对涂层薄膜进行了全面的表征,揭示了450°C的最佳衬底温度可以增强结构,形态和光学性能。采用优化后的MgO薄膜制备的MOS二极管具有优异的光电二极管参数,包括理想因数降低到3.81(光照条件下)和5.05(黑暗条件下),势垒高度提高到0.73 eV(光照条件下)和0.71 eV(黑暗条件下),漏电流减小。值得注意的是,这些二极管具有48.96%的高光敏度,27.11 mA/W的响应率,1.05%的量子效率和5.31 × 10−9琼斯的探测率。这些发现对高性能MOS肖特基势垒二极管的发展具有深远的意义,有望彻底改变先进光电和光伏应用的格局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信