LSTM and CNN hybrid model for enhanced fingerprint recognition

Nahla Abdulnabee Sameer , Bashar M. Nema
{"title":"LSTM and CNN hybrid model for enhanced fingerprint recognition","authors":"Nahla Abdulnabee Sameer ,&nbsp;Bashar M. Nema","doi":"10.1016/j.etdah.2025.100174","DOIUrl":null,"url":null,"abstract":"<div><div>The paper introduces an advanced hybrid model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to enhance fingerprint detection and matching within large datasets. The CNN component is employed for feature extraction and learning from image data, while the LSTM component is utilized for sequence prediction in temporal series, yielding optimal results compared to existing methods based on specific criteria. This hybrid approach achieves a fingerprint recognition accuracy of 99.85 %. The proposed method effectively reduces errors in recognition and false rejection rates in fingerprint recognition systems, thereby improving overall usability and security. The integration of CNN and LSTM in fingerprint recognition signifies a substantial advancement in biometric authentication technology, with potential applications in law enforcement, border security, and access control systems.</div></div>","PeriodicalId":72899,"journal":{"name":"Emerging trends in drugs, addictions, and health","volume":"5 ","pages":"Article 100174"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging trends in drugs, addictions, and health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667118225000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces an advanced hybrid model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to enhance fingerprint detection and matching within large datasets. The CNN component is employed for feature extraction and learning from image data, while the LSTM component is utilized for sequence prediction in temporal series, yielding optimal results compared to existing methods based on specific criteria. This hybrid approach achieves a fingerprint recognition accuracy of 99.85 %. The proposed method effectively reduces errors in recognition and false rejection rates in fingerprint recognition systems, thereby improving overall usability and security. The integration of CNN and LSTM in fingerprint recognition signifies a substantial advancement in biometric authentication technology, with potential applications in law enforcement, border security, and access control systems.
LSTM与CNN混合模型增强指纹识别
本文介绍了一种将卷积神经网络(CNN)和长短期记忆(LSTM)网络相结合的先进混合模型,以增强大数据集内的指纹检测和匹配。利用CNN分量对图像数据进行特征提取和学习,利用LSTM分量对时间序列进行序列预测,与现有的基于特定标准的方法相比,得到了最优的结果。该混合方法的指纹识别准确率达到99.85%。该方法有效地降低了指纹识别系统的识别误差和误拒率,从而提高了系统的整体可用性和安全性。CNN和LSTM在指纹识别中的结合标志着生物特征认证技术的重大进步,在执法、边境安全和门禁系统中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Emerging trends in drugs, addictions, and health
Emerging trends in drugs, addictions, and health Pharmacology, Psychiatry and Mental Health, Forensic Medicine, Drug Discovery, Pharmacology, Toxicology and Pharmaceutics (General)
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信