Phase assemblage and microstructure of burnt oil shale-containing blended cements

Federica Boscaro , Diana Londono-Zuluaga , Peter Kruspan , Michael Plötze , Karen Scrivener , Robert J. Flatt
{"title":"Phase assemblage and microstructure of burnt oil shale-containing blended cements","authors":"Federica Boscaro ,&nbsp;Diana Londono-Zuluaga ,&nbsp;Peter Kruspan ,&nbsp;Michael Plötze ,&nbsp;Karen Scrivener ,&nbsp;Robert J. Flatt","doi":"10.1016/j.cement.2025.100139","DOIUrl":null,"url":null,"abstract":"<div><div>Burnt oil shale (BOS), obtained from the combustion of oil shale, is a promising supplementary cementitious material (SCM) based on its chemistry and mineralogy. This paper summarizes the use of BOS and its hydration in blended cements. It presents new data on the effect of combinations of alkali activators and Ca(NO<sub>3</sub>)<sub>2</sub> in blended cements containing 50 % Portland cement (OPC) where BOS is combined with limestone, fly ash and ground granulated blast furnace slag. These chemical admixtures increase the slope of the correlation between compressive strength and heat of hydration of BOS containing mixes, providing an increase in compressive strength from 1 to 7 days for similar heat release to the control system. In contrast, the slope is not affected in absence of BOS. The change is due to a higher volume of hydrates from BOS increased hydration for a given C<sub>3</sub>S degree of hydration, likely from a less exothermic dissolution of BOS amorphous component. These admixtures increase the reactivity of both BOS and OPC at different curing times and depending on the type of alkali activator. They promote ettringite and portlandite precipitation, inducing a refinement of the microstructure, particularly around BOS particles. The information presented should pave the way to a broader and more effective use of BOS in blended cements with particularly low clinker contents.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"20 ","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654922500012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Burnt oil shale (BOS), obtained from the combustion of oil shale, is a promising supplementary cementitious material (SCM) based on its chemistry and mineralogy. This paper summarizes the use of BOS and its hydration in blended cements. It presents new data on the effect of combinations of alkali activators and Ca(NO3)2 in blended cements containing 50 % Portland cement (OPC) where BOS is combined with limestone, fly ash and ground granulated blast furnace slag. These chemical admixtures increase the slope of the correlation between compressive strength and heat of hydration of BOS containing mixes, providing an increase in compressive strength from 1 to 7 days for similar heat release to the control system. In contrast, the slope is not affected in absence of BOS. The change is due to a higher volume of hydrates from BOS increased hydration for a given C3S degree of hydration, likely from a less exothermic dissolution of BOS amorphous component. These admixtures increase the reactivity of both BOS and OPC at different curing times and depending on the type of alkali activator. They promote ettringite and portlandite precipitation, inducing a refinement of the microstructure, particularly around BOS particles. The information presented should pave the way to a broader and more effective use of BOS in blended cements with particularly low clinker contents.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信