Physics-driven complex relaxation for multi-body systems of SPH method

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chenxi Zhao , Yongchuan Yu , Oskar J. Haidn , Xiangyu Hu
{"title":"Physics-driven complex relaxation for multi-body systems of SPH method","authors":"Chenxi Zhao ,&nbsp;Yongchuan Yu ,&nbsp;Oskar J. Haidn ,&nbsp;Xiangyu Hu","doi":"10.1016/j.cpc.2025.109615","DOIUrl":null,"url":null,"abstract":"<div><div>In the smoothed particle dynamics (SPH) method, the characteristics of a target particle are interpolated based on the information from its neighbor particles. Consequently, a uniform initial distribution of particles significantly enhances the accuracy of SPH calculations. This aspect is particularly critical in Eulerian SPH, where particles are stationary throughout the simulation. To address this, we introduce a physics-driven complex relaxation method for multi-body systems. Through a series of two-dimensional and three-dimensional case studies, we demonstrate that this method is capable of achieving a globally uniform particle distribution, especially at the interfaces between contacting bodies, and ensuring improved zero-order consistency. Moreover, the effectiveness and reliability of the complex relaxation method in enhancing the accuracy of physical simulations are further validated.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"313 ","pages":"Article 109615"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001171","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the smoothed particle dynamics (SPH) method, the characteristics of a target particle are interpolated based on the information from its neighbor particles. Consequently, a uniform initial distribution of particles significantly enhances the accuracy of SPH calculations. This aspect is particularly critical in Eulerian SPH, where particles are stationary throughout the simulation. To address this, we introduce a physics-driven complex relaxation method for multi-body systems. Through a series of two-dimensional and three-dimensional case studies, we demonstrate that this method is capable of achieving a globally uniform particle distribution, especially at the interfaces between contacting bodies, and ensuring improved zero-order consistency. Moreover, the effectiveness and reliability of the complex relaxation method in enhancing the accuracy of physical simulations are further validated.
SPH方法下多体系统的物理驱动复弛豫
在光滑粒子动力学(SPH)方法中,目标粒子的特征是基于其邻近粒子的信息进行插值的。因此,均匀的粒子初始分布大大提高了SPH计算的精度。这一点在欧拉SPH中尤为重要,因为粒子在整个模拟过程中都是静止的。为了解决这个问题,我们引入了一种物理驱动的多体系统复杂松弛方法。通过一系列二维和三维的案例研究,我们证明了该方法能够实现全局均匀的粒子分布,特别是在接触体之间的界面,并确保提高零阶一致性。进一步验证了复松弛法在提高物理模拟精度方面的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信