{"title":"Ultrasound-switchable piezoelectric BiVO4/fullerene heterostructure for on-demand ROS modulation in MRSA-infected diabetic wound healing","authors":"Zini Huang , Yihan Ma , Xinyi Yang, Xiaoping Yang, Yinjia Cheng, Aiqing Zhang","doi":"10.1016/j.bioadv.2025.214307","DOIUrl":null,"url":null,"abstract":"<div><div>Persistent microbial infections and excessive reactive oxygen species (ROS) accumulation severely impede diabetic wound healing. Herein, we developed an ultrasound-switchable BiVO<sub>4</sub>/fullerene piezoelectric heterostructure <em>via</em> a one-pot solvothermal method, enabling on-demand transition between bactericidal action and ROS scavenging for treating infected diabetic wounds. Under 8-min ultrasound (US) irradiation, the heterojunction sonosensitizer leveraged piezoelectric polarization to generate substantial ROS in real-time through a narrowed energy band gap and enhanced charge carrier separation and migration efficiency, resulting in the disruption of bacterial membrane integrity and 99.9 % eradication of methicillin-resistant <em>Staphylococcus aureus</em> (MRSA). Upon US withdrawal, the sonosensitizer spontaneously transitioned to an antioxidative state through fullerene-mediated ROS scavenging, effectively neutralizing excess ROS and restoring cellular redox balance. In an MRSA-infected diabetic wound model, this ultrasound-responsive duality effectively suppressed bacterial proliferation, reduced inflammation, enhanced angiogenesis, and ultimately accelerated wound healing within 14 days. This ultrasound-switchable therapeutic strategy offers promising insights for managing drug-resistant infections and other ROS-mediated biomedical challenges.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"174 ","pages":"Article 214307"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825001347","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Persistent microbial infections and excessive reactive oxygen species (ROS) accumulation severely impede diabetic wound healing. Herein, we developed an ultrasound-switchable BiVO4/fullerene piezoelectric heterostructure via a one-pot solvothermal method, enabling on-demand transition between bactericidal action and ROS scavenging for treating infected diabetic wounds. Under 8-min ultrasound (US) irradiation, the heterojunction sonosensitizer leveraged piezoelectric polarization to generate substantial ROS in real-time through a narrowed energy band gap and enhanced charge carrier separation and migration efficiency, resulting in the disruption of bacterial membrane integrity and 99.9 % eradication of methicillin-resistant Staphylococcus aureus (MRSA). Upon US withdrawal, the sonosensitizer spontaneously transitioned to an antioxidative state through fullerene-mediated ROS scavenging, effectively neutralizing excess ROS and restoring cellular redox balance. In an MRSA-infected diabetic wound model, this ultrasound-responsive duality effectively suppressed bacterial proliferation, reduced inflammation, enhanced angiogenesis, and ultimately accelerated wound healing within 14 days. This ultrasound-switchable therapeutic strategy offers promising insights for managing drug-resistant infections and other ROS-mediated biomedical challenges.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!