Michael Mauersberger, Florian Dexl, Johannes F.C. Markmiller
{"title":"Scaling-up topology optimization with target stress states via gradient-based algorithms","authors":"Michael Mauersberger, Florian Dexl, Johannes F.C. Markmiller","doi":"10.1016/j.compstruc.2025.107766","DOIUrl":null,"url":null,"abstract":"<div><div>Benchmark artifacts serve as an appropriate mean to represent quality measures in additively manufactured components. Especially witness specimens, which represent structural properties as a subtype of benchmark artifacts, are supposed to reproduce target stress states as they are critical for component failure.</div><div>This study aims at proposing an approach to effectively scale the results of topology optimized witness specimens with failure-critical target stress states using gradient-based methods. Therefore, possible formulations with analytical sensitivities are derived and implemented in a Matlab framework in order to contextualize the actual formulation within classical approaches consistently.</div><div>It has been confirmed that gradient-based topology optimization with analytical sensitivities is not appropriate for a direct formulation of failure-critical target stress states. Thus, an indirect formulation based on compliant mechanisms is presented in this paper. It is shown that plausible, functional structures can be produced. Target stresses are achieved in scaled-up results in two and three dimensions with an accuracy up to a relative error of 3.7 %.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"314 ","pages":"Article 107766"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925001245","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Benchmark artifacts serve as an appropriate mean to represent quality measures in additively manufactured components. Especially witness specimens, which represent structural properties as a subtype of benchmark artifacts, are supposed to reproduce target stress states as they are critical for component failure.
This study aims at proposing an approach to effectively scale the results of topology optimized witness specimens with failure-critical target stress states using gradient-based methods. Therefore, possible formulations with analytical sensitivities are derived and implemented in a Matlab framework in order to contextualize the actual formulation within classical approaches consistently.
It has been confirmed that gradient-based topology optimization with analytical sensitivities is not appropriate for a direct formulation of failure-critical target stress states. Thus, an indirect formulation based on compliant mechanisms is presented in this paper. It is shown that plausible, functional structures can be produced. Target stresses are achieved in scaled-up results in two and three dimensions with an accuracy up to a relative error of 3.7 %.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.