Optimized pyrolysis of household plastic waste in Indonesia for oil production: Hydrocarbon profiling, fuel alternative, and potential biomedical application

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Winny Andalia , Irnanda Pratiwi , Bazlina Dawami Afrah , Imam Akbar , Muhammad Imam Ammarullah
{"title":"Optimized pyrolysis of household plastic waste in Indonesia for oil production: Hydrocarbon profiling, fuel alternative, and potential biomedical application","authors":"Winny Andalia ,&nbsp;Irnanda Pratiwi ,&nbsp;Bazlina Dawami Afrah ,&nbsp;Imam Akbar ,&nbsp;Muhammad Imam Ammarullah","doi":"10.1016/j.rechem.2025.102247","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating generation of household plastic waste in Indonesia, driven by population growth and urbanization, necessitates innovative waste-to-energy solutions. This study investigates the pyrolysis of seven common household plastics: polypropylene (PP), high-density polyethylene (HDPE), low-density polyethylene (LDPE), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and others that under varying temperatures (300–500 °C) to optimize pyrolysis oil yields and characterize hydrocarbon profiles. Experimental results reveal that PP and LDPE exhibit the highest pyrolysis oil yields, reaching 78.3 % and 83.4 % at 400 °C, respectively, compared to HDPE (72.6 %) and PS (69.1 %). Gas chromatography-mass spectrometry (GC–MS) analysis indicates temperature-dependent shifts in hydrocarbon distribution: PP and PS primarily produce lighter fractions (C6–C10), with PP yielding 42.5 % gasoline-range hydrocarbons and PS producing 39.2 %, whereas LDPE and HDPE generate heavier fractions (C16–C22), constituting 58.7 % and 54.3 % of their respective pyrolysis oils, making them more suitable for diesel fuel. In contrast, PVC and PET yield only 12.5 % and 8.9 % pyrolysis oil, primarily decomposing into gases and solid residues, highlighting their limited suitability for liquid fuel production. Beyond fuel applications, this study explores the biomedical potential of pyrolysis-derived hydrocarbons, including their role in pharmaceutical synthesis, medical-grade polymer development, and bio-based solvents. Pyrolysis oils containing specific hydrocarbon fractions (C8–C12) may serve as precursors for bioactive compounds, while purified derivatives could be repurposed for biomedical coatings or antimicrobial agents. These findings provide actionable insights for optimizing pyrolysis conditions and feedstock selection, particularly in developing regions grappling with mixed plastic waste challenges, supporting both sustainable energy generation, and potential biomedical innovations.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"15 ","pages":"Article 102247"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625002309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating generation of household plastic waste in Indonesia, driven by population growth and urbanization, necessitates innovative waste-to-energy solutions. This study investigates the pyrolysis of seven common household plastics: polypropylene (PP), high-density polyethylene (HDPE), low-density polyethylene (LDPE), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and others that under varying temperatures (300–500 °C) to optimize pyrolysis oil yields and characterize hydrocarbon profiles. Experimental results reveal that PP and LDPE exhibit the highest pyrolysis oil yields, reaching 78.3 % and 83.4 % at 400 °C, respectively, compared to HDPE (72.6 %) and PS (69.1 %). Gas chromatography-mass spectrometry (GC–MS) analysis indicates temperature-dependent shifts in hydrocarbon distribution: PP and PS primarily produce lighter fractions (C6–C10), with PP yielding 42.5 % gasoline-range hydrocarbons and PS producing 39.2 %, whereas LDPE and HDPE generate heavier fractions (C16–C22), constituting 58.7 % and 54.3 % of their respective pyrolysis oils, making them more suitable for diesel fuel. In contrast, PVC and PET yield only 12.5 % and 8.9 % pyrolysis oil, primarily decomposing into gases and solid residues, highlighting their limited suitability for liquid fuel production. Beyond fuel applications, this study explores the biomedical potential of pyrolysis-derived hydrocarbons, including their role in pharmaceutical synthesis, medical-grade polymer development, and bio-based solvents. Pyrolysis oils containing specific hydrocarbon fractions (C8–C12) may serve as precursors for bioactive compounds, while purified derivatives could be repurposed for biomedical coatings or antimicrobial agents. These findings provide actionable insights for optimizing pyrolysis conditions and feedstock selection, particularly in developing regions grappling with mixed plastic waste challenges, supporting both sustainable energy generation, and potential biomedical innovations.

Abstract Image

印度尼西亚家用塑料垃圾的优化热解用于石油生产:碳氢化合物分析,燃料替代和潜在的生物医学应用
在人口增长和城市化的推动下,印度尼西亚的家庭塑料废物不断增加,需要创新的废物转化为能源的解决方案。本研究对聚丙烯(PP)、高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)等7种常见家用塑料在不同温度(300-500℃)下的热解进行了研究,以优化热解油收率并表征碳氢化合物剖面。实验结果表明,在400℃时,PP和LDPE的热解油收率最高,分别达到78.3%和83.4%,而HDPE和PS的热解油收率分别为72.6%和69.1%。气相色谱-质谱(GC-MS)分析表明,碳氢化合物分布的温度依赖变化:PP和PS主要产生较轻的馏分(C6-C10),其中PP产生42.5%的汽油级碳氢化合物,PS产生39.2%的汽油级碳氢化合物,而LDPE和HDPE产生较重的馏分(C16-C22),分别占其热解油的58.7%和54.3%,使其更适合柴油。相比之下,PVC和PET的热解油收率仅为12.5%和8.9%,主要分解为气体和固体残留物,这表明它们在液体燃料生产中的适用性有限。除了燃料应用之外,本研究还探索了热解衍生碳氢化合物的生物医学潜力,包括它们在药物合成、医用级聚合物开发和生物基溶剂中的作用。热解油含有特定的烃组分(C8-C12)可以作为生物活性化合物的前体,而纯化的衍生物可以重新用于生物医学涂料或抗菌剂。这些发现为优化热解条件和原料选择提供了可行的见解,特别是在应对混合塑料废物挑战的发展中地区,支持可持续能源生产和潜在的生物医学创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信