Water resource vulnerabilities from climate-induced tipping point behaviour in runoff volumes and seasonality in the region of the ‘Karakoram Anomaly’: A snow-glacier melt perspective

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Jamal Hassan Ougahi , John S. Rowan
{"title":"Water resource vulnerabilities from climate-induced tipping point behaviour in runoff volumes and seasonality in the region of the ‘Karakoram Anomaly’: A snow-glacier melt perspective","authors":"Jamal Hassan Ougahi ,&nbsp;John S. Rowan","doi":"10.1016/j.ejrh.2025.102386","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Hunza River Basin, Karakoram range, Pakistan</div></div><div><h3>Focus of study</h3><div>Assessing the future persistence of the 'Karakoram Anomaly,' under climate change scenarios, where glaciers in the region exhibit stable or slightly negative mass balances, contrary to global trends.</div></div><div><h3>New Hydrological insights for the region</h3><div>The study explores how long the anomalous behaviour in Karakoram glaciers will persist under future climate scenarios. The results indicate a significant temperature rise under Shared Socioeconomic Pathway 5 (SSP5), whereas SSP2 exhibits greater variability. Snow Water Equivalent (SWE) is projected to decline due to reduced snowfall and faster snowmelt across all seasons, particularly in summer and autumn. Our glacio-hydrological model projects substantial glacier retreat from 4270 km<sup>2</sup> in 2010 reducing to 3540 km<sup>2</sup> or 2730 km<sup>2</sup> by 2100 according to SSP2 and SSP5, respectively. Increased annual runoff peaks around 2050 (SSP2) and by 2070 (SSP5) before decline in total runoff by 2100. The study also highlights significant climate change impacts on seasonal hydrology, associated with declines in glacier and snowpack water storage in the next three decades. This stresses the need for adaptive water resource management (e.g. storage infrastructure or changing demand management) to address potential water shortages to human water users e.g. irrigation and hydropower and associated ecosystem disruptions including extreme flooding. These findings provide valuable insights for future hydro-climatic dynamics and policymaking in the region.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"59 ","pages":"Article 102386"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825002113","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

Hunza River Basin, Karakoram range, Pakistan

Focus of study

Assessing the future persistence of the 'Karakoram Anomaly,' under climate change scenarios, where glaciers in the region exhibit stable or slightly negative mass balances, contrary to global trends.

New Hydrological insights for the region

The study explores how long the anomalous behaviour in Karakoram glaciers will persist under future climate scenarios. The results indicate a significant temperature rise under Shared Socioeconomic Pathway 5 (SSP5), whereas SSP2 exhibits greater variability. Snow Water Equivalent (SWE) is projected to decline due to reduced snowfall and faster snowmelt across all seasons, particularly in summer and autumn. Our glacio-hydrological model projects substantial glacier retreat from 4270 km2 in 2010 reducing to 3540 km2 or 2730 km2 by 2100 according to SSP2 and SSP5, respectively. Increased annual runoff peaks around 2050 (SSP2) and by 2070 (SSP5) before decline in total runoff by 2100. The study also highlights significant climate change impacts on seasonal hydrology, associated with declines in glacier and snowpack water storage in the next three decades. This stresses the need for adaptive water resource management (e.g. storage infrastructure or changing demand management) to address potential water shortages to human water users e.g. irrigation and hydropower and associated ecosystem disruptions including extreme flooding. These findings provide valuable insights for future hydro-climatic dynamics and policymaking in the region.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信