The effects of attention to climate change on carbon, fossil energy and clean energy markets: Based on causal network learning algorithms

IF 7.9 2区 工程技术 Q1 ENERGY & FUELS
Wenwen Liu, Miaomiao Tang, Peng Zhao
{"title":"The effects of attention to climate change on carbon, fossil energy and clean energy markets: Based on causal network learning algorithms","authors":"Wenwen Liu,&nbsp;Miaomiao Tang,&nbsp;Peng Zhao","doi":"10.1016/j.esr.2025.101717","DOIUrl":null,"url":null,"abstract":"<div><div>Climate-driven market interdependencies critically influence emission reduction strategies, yet the causal mechanisms linking carbon, fossil, and clean energy markets remain poorly quantified -a knowledge gap impairing risk-aware policymaking and sustainable investments. This study uses the Peter-Clark Momentary Conditional Independence (PCMCI) method in causal network learning algorithms to systematically quantify the multidimensional dynamic causal effects of climate attention, yield, and volatility across these three markets. We construct an investor climate attention indicator using 47 climate-related keywords and analyze daily price data from seven carbon, four clean energy, and three fossil energy markets. Empirical results demonstrate that structural heterogeneity exists in the price transmission mechanism, and attention to climate change disturbances trigger cross-market chain reactions. In the yield dynamics, an expectation-driven asymmetry emerges with a multiplier amplification mechanism. The volatility transmission follows a hierarchical path. Evolutionary analysis reveals the transformation of the energy system and the core position of the carbon market. This study offers investors quantitative guidance for constructing climate-resilient portfolios, highlighting the pivotal role of climate attention within the green financial system.</div></div>","PeriodicalId":11546,"journal":{"name":"Energy Strategy Reviews","volume":"59 ","pages":"Article 101717"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Strategy Reviews","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211467X2500080X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Climate-driven market interdependencies critically influence emission reduction strategies, yet the causal mechanisms linking carbon, fossil, and clean energy markets remain poorly quantified -a knowledge gap impairing risk-aware policymaking and sustainable investments. This study uses the Peter-Clark Momentary Conditional Independence (PCMCI) method in causal network learning algorithms to systematically quantify the multidimensional dynamic causal effects of climate attention, yield, and volatility across these three markets. We construct an investor climate attention indicator using 47 climate-related keywords and analyze daily price data from seven carbon, four clean energy, and three fossil energy markets. Empirical results demonstrate that structural heterogeneity exists in the price transmission mechanism, and attention to climate change disturbances trigger cross-market chain reactions. In the yield dynamics, an expectation-driven asymmetry emerges with a multiplier amplification mechanism. The volatility transmission follows a hierarchical path. Evolutionary analysis reveals the transformation of the energy system and the core position of the carbon market. This study offers investors quantitative guidance for constructing climate-resilient portfolios, highlighting the pivotal role of climate attention within the green financial system.
关注气候变化对碳、化石能源和清洁能源市场的影响:基于因果网络学习算法
气候驱动的市场相互依赖关系严重影响减排战略,但碳、化石和清洁能源市场之间的因果机制仍然难以量化,这是一种知识差距,不利于有风险意识的政策制定和可持续投资。本研究使用因果网络学习算法中的Peter-Clark瞬时条件独立(PCMCI)方法,系统地量化了这三个市场中气候关注、产量和波动性的多维动态因果效应。我们使用47个气候相关关键词构建了投资者气候关注指标,并分析了7个碳市场、4个清洁能源市场和3个化石能源市场的每日价格数据。实证结果表明,价格传导机制存在结构性异质性,对气候变化干扰的关注引发了跨市场连锁反应。在产量动力学中,预期驱动的不对称以乘数放大机制出现。波动率的传递遵循分层路径。演化分析揭示了能源体系的转型和碳市场的核心地位。本研究为投资者构建气候适应型投资组合提供了定量指导,强调了气候关注在绿色金融体系中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Strategy Reviews
Energy Strategy Reviews Energy-Energy (miscellaneous)
CiteScore
12.80
自引率
4.90%
发文量
167
审稿时长
40 weeks
期刊介绍: Energy Strategy Reviews is a gold open access journal that provides authoritative content on strategic decision-making and vision-sharing related to society''s energy needs. Energy Strategy Reviews publishes: • Analyses • Methodologies • Case Studies • Reviews And by invitation: • Report Reviews • Viewpoints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信