Enhancement of the olefin selectivity over ZnSAPO-34 zeolite toward methanol-to-olefins conversion and its mechanistic interpretation

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Chang Wang , Lei Zhang , Jiahui Yang , Jun Yu , Xue Shao , Lina Zhang , Runze Liu , Weiping Zhu , Weili Dai
{"title":"Enhancement of the olefin selectivity over ZnSAPO-34 zeolite toward methanol-to-olefins conversion and its mechanistic interpretation","authors":"Chang Wang ,&nbsp;Lei Zhang ,&nbsp;Jiahui Yang ,&nbsp;Jun Yu ,&nbsp;Xue Shao ,&nbsp;Lina Zhang ,&nbsp;Runze Liu ,&nbsp;Weiping Zhu ,&nbsp;Weili Dai","doi":"10.1016/j.micromeso.2025.113632","DOIUrl":null,"url":null,"abstract":"<div><div>The SAPO-34 zeolite serves as a crucial catalyst in the methanol-to-olefins (MTO) conversion to produce ethylene and propylene, yet suffering from the unsatisfied trade-off between long catalyst lifetime and high light olefins selectivity. Herein, we report a stable and efficient hierarchical ZnSAPO-34 zeolite prepared via hydrothermal method, which is featured with the successful introduction of Zn species into SAPO-34 framework. Impressively, the ZnSAPO-34 catalyst achieves a significantly enhanced ethylene selectivity of 60 % without obviously sacrificing catalyst lifetime. A combination study including online mass spectrometer (MS), <sup>13</sup>C MAS NMR and <em>in situ</em> UV–visible (UV–vis) spectroscopy demonstrates that Zn species facilitate the initial generation of carbonyl species accompanied by the formation of hydrocarbon pool species, thus boosting the ethylene selectivity via the aromatic-based cycle. Meanwhile, the one-step introduction of Zn species leads to smaller crystal size and increases mesoporous in zeolite, enhancing the diffusion capacity of the ZnSAPO-34 sample, which accounts for the almost unchanged catalyst lifetime. The mechanistic interpretation provides a novel perspective to optimize zeolite catalysts by one-step introducing heteroatom, which shows potential applications in industrial MTO production.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"392 ","pages":"Article 113632"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001465","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The SAPO-34 zeolite serves as a crucial catalyst in the methanol-to-olefins (MTO) conversion to produce ethylene and propylene, yet suffering from the unsatisfied trade-off between long catalyst lifetime and high light olefins selectivity. Herein, we report a stable and efficient hierarchical ZnSAPO-34 zeolite prepared via hydrothermal method, which is featured with the successful introduction of Zn species into SAPO-34 framework. Impressively, the ZnSAPO-34 catalyst achieves a significantly enhanced ethylene selectivity of 60 % without obviously sacrificing catalyst lifetime. A combination study including online mass spectrometer (MS), 13C MAS NMR and in situ UV–visible (UV–vis) spectroscopy demonstrates that Zn species facilitate the initial generation of carbonyl species accompanied by the formation of hydrocarbon pool species, thus boosting the ethylene selectivity via the aromatic-based cycle. Meanwhile, the one-step introduction of Zn species leads to smaller crystal size and increases mesoporous in zeolite, enhancing the diffusion capacity of the ZnSAPO-34 sample, which accounts for the almost unchanged catalyst lifetime. The mechanistic interpretation provides a novel perspective to optimize zeolite catalysts by one-step introducing heteroatom, which shows potential applications in industrial MTO production.

Abstract Image

ZnSAPO-34 沸石对甲醇-烯烃转化的烯烃选择性增强及其机理解释
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信