Chaodan Hu , Linjiang Chai , Zhichen Wang , Tao Yang , Yi Tang , Zhongwei Wang , Weijia Gong , Korukonda L. Murty
{"title":"Microstructure and wear resistance of zirconium manufactured by laser directed energy deposition","authors":"Chaodan Hu , Linjiang Chai , Zhichen Wang , Tao Yang , Yi Tang , Zhongwei Wang , Weijia Gong , Korukonda L. Murty","doi":"10.1016/j.ijrmhm.2025.107168","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a zirconium sheet was fabricated utilizing laser directed energy deposition (L-DED) technique along with its microstructure, hardness, and wear resistance to be compared with a conventionally rolled and annealed (RA) zirconium sheet. The RA specimen exhibits equiaxed grains with uniform size and a bimodal basal texture, along with a few dispersed ZrFe<sub>2</sub> particles. In contrast, the L-DED specimen is featured by parallel or interlaced laths (with dense entangled dislocations) and many Zr<sub>3</sub>Fe precipitates along the lath boundaries, exhibiting a nearly random texture. Tests reveal that the L-DED specimen shows nearly two times hardness and a ∼ 30 % reduced wear rate compared to the RA specimen. Such improvement can be jointly attributed to the enhanced second-phase, dislocation and grain refinement hardening/strengthening. This study verifies the feasibility of producing high performance zirconium materials through L-DED, which could provide some definite insight into further application of additive manufacturing to zirconium production.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107168"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001337","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a zirconium sheet was fabricated utilizing laser directed energy deposition (L-DED) technique along with its microstructure, hardness, and wear resistance to be compared with a conventionally rolled and annealed (RA) zirconium sheet. The RA specimen exhibits equiaxed grains with uniform size and a bimodal basal texture, along with a few dispersed ZrFe2 particles. In contrast, the L-DED specimen is featured by parallel or interlaced laths (with dense entangled dislocations) and many Zr3Fe precipitates along the lath boundaries, exhibiting a nearly random texture. Tests reveal that the L-DED specimen shows nearly two times hardness and a ∼ 30 % reduced wear rate compared to the RA specimen. Such improvement can be jointly attributed to the enhanced second-phase, dislocation and grain refinement hardening/strengthening. This study verifies the feasibility of producing high performance zirconium materials through L-DED, which could provide some definite insight into further application of additive manufacturing to zirconium production.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.