Klaudia Kocsy , Sumeet Deshmukh , Shah Nawaz , Ali N. Ali , Sheharyar Baig , Joyce S. Balami , Arshad Majid , Endre Kiss-Toth , Sheila Francis , Jessica Redgrave
{"title":"Reprogramming human macrophages in symptomatic carotid stenosis: Stabilization of atherosclerotic carotid plaques","authors":"Klaudia Kocsy , Sumeet Deshmukh , Shah Nawaz , Ali N. Ali , Sheharyar Baig , Joyce S. Balami , Arshad Majid , Endre Kiss-Toth , Sheila Francis , Jessica Redgrave","doi":"10.1016/j.atherosclerosis.2025.119180","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Aims</h3><div>Inflammation is a precursor to atherosclerotic plaque destabilisation, leading to ischaemic events like stroke. Since macrophage phenotypes can be influenced by their microenvironment, we aimed to stabilise plaques and reduce the risk of recurrent ischaemic events using clinically relevant anti-inflammatory agents.</div></div><div><h3>Methods</h3><div>Thirteen carotid plaques from stroke/Transient Ischaemic Attack (TIA) patients undergoing carotid endarterectomy were analysed using immunofluorescence stain to identify macrophage markers (CD68, CD86, MRC1). An <em>in vitro</em> model of human blood-derived macrophages was used to evaluate the effects of statins and glucocorticoids on macrophage-specific markers using RT-qPCR, Western Blot, and immunofluorescence staining. The physiological effects of dexamethasone on macrophages and human carotid plaques were further studied <em>ex vivo</em>.</div></div><div><h3>Results</h3><div>The macrophage population (CD68<sup>+</sup>) in the carotid plaques was dominated by “double-positive” (CD86+MRC1+) macrophages (67.8 %), followed by “M1-like” (CD86+MRC1-) (16.5 %), “M2-like” (CD86-MRC1+) (8.7 %) and “double-negative” (CD86-MRC1-) (7.0 %) macrophages. M1-like macrophages were more prevalent in unstable plaque sections than stable ones (p = 0.0022). Exposure to dexamethasone increased macrophage <em>MRC1</em> gene expression <em>in vitro</em> and <em>ex vivo</em>. It also reduced the expression of the Oxidised Low-Density Lipoprotein Receptor 1 (<em>OLR1</em>) gene and protein, leading to reduced oxLDL uptake in foam cell assays.</div></div><div><h3>Conclusions</h3><div>Clinically relevant concentrations of glucocorticoids may shift human macrophages to a less inflammatory state, thus reducing their ability for oxidised LDL uptake. In contrast, this anti-inflammatory mechanism was not observed in response to statins. These findings suggest that glucocorticoids could help prevent ischemic events in patients with advanced atherosclerosis.</div></div>","PeriodicalId":8623,"journal":{"name":"Atherosclerosis","volume":"404 ","pages":"Article 119180"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atherosclerosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021915025000784","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Aims
Inflammation is a precursor to atherosclerotic plaque destabilisation, leading to ischaemic events like stroke. Since macrophage phenotypes can be influenced by their microenvironment, we aimed to stabilise plaques and reduce the risk of recurrent ischaemic events using clinically relevant anti-inflammatory agents.
Methods
Thirteen carotid plaques from stroke/Transient Ischaemic Attack (TIA) patients undergoing carotid endarterectomy were analysed using immunofluorescence stain to identify macrophage markers (CD68, CD86, MRC1). An in vitro model of human blood-derived macrophages was used to evaluate the effects of statins and glucocorticoids on macrophage-specific markers using RT-qPCR, Western Blot, and immunofluorescence staining. The physiological effects of dexamethasone on macrophages and human carotid plaques were further studied ex vivo.
Results
The macrophage population (CD68+) in the carotid plaques was dominated by “double-positive” (CD86+MRC1+) macrophages (67.8 %), followed by “M1-like” (CD86+MRC1-) (16.5 %), “M2-like” (CD86-MRC1+) (8.7 %) and “double-negative” (CD86-MRC1-) (7.0 %) macrophages. M1-like macrophages were more prevalent in unstable plaque sections than stable ones (p = 0.0022). Exposure to dexamethasone increased macrophage MRC1 gene expression in vitro and ex vivo. It also reduced the expression of the Oxidised Low-Density Lipoprotein Receptor 1 (OLR1) gene and protein, leading to reduced oxLDL uptake in foam cell assays.
Conclusions
Clinically relevant concentrations of glucocorticoids may shift human macrophages to a less inflammatory state, thus reducing their ability for oxidised LDL uptake. In contrast, this anti-inflammatory mechanism was not observed in response to statins. These findings suggest that glucocorticoids could help prevent ischemic events in patients with advanced atherosclerosis.
期刊介绍:
Atherosclerosis has an open access mirror journal Atherosclerosis: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atherosclerosis brings together, from all sources, papers concerned with investigation on atherosclerosis, its risk factors and clinical manifestations. Atherosclerosis covers basic and translational, clinical and population research approaches to arterial and vascular biology and disease, as well as their risk factors including: disturbances of lipid and lipoprotein metabolism, diabetes and hypertension, thrombosis, and inflammation. The Editors are interested in original or review papers dealing with the pathogenesis, environmental, genetic and epigenetic basis, diagnosis or treatment of atherosclerosis and related diseases as well as their risk factors.