Performance of TiO2-SiC nanomaterials on morphology and sorption behavior of PVA-PEG-based nanocomposites for UV-applications and antibacterial efficacy
Nawras T. Sheehab , Fouad Sh. Hashim , Ehssan Al-Bermany , Ahmed Najm Obaid , Karar Abdali , Adel H. Omran Alkhayatt
{"title":"Performance of TiO2-SiC nanomaterials on morphology and sorption behavior of PVA-PEG-based nanocomposites for UV-applications and antibacterial efficacy","authors":"Nawras T. Sheehab , Fouad Sh. Hashim , Ehssan Al-Bermany , Ahmed Najm Obaid , Karar Abdali , Adel H. Omran Alkhayatt","doi":"10.1016/j.nanoso.2025.101479","DOIUrl":null,"url":null,"abstract":"<div><div>This work exhibits the incorporation of TiO<sub>2</sub>-SiC nanoparticles (NPs) for the first time via a green and cost-effective route. It examines their loading into a polymeric matrix (PM) composed of polyvinyl alcohol (PVA) and polyethylene glycol (PEG) at several weight percentages (wt%) via a casting way. The Fourier transform infrared spectroscopy (FTIR) revealed the chemical properties. Field emission scanning electron microscopy (FESEM) confirmed that the surface morphology of PM is rough and homogenous. Furthermore, the insertion of lower filler loadings of TiO<sub>2</sub>-SiC NPs was uniformly and well dispersed through the PM, reducing aggregations. It is rough and homogenous. The compositional elements were achieved using EDXs. The optical absorbance values were boosted by 85 % at a wavelength of 260 nm, decreasing the indirect bandgaps by 47.5 %, from 4.58 eV to 2.40 eV (Tauc model) and from 4.83 eV to 2.60 eV (ASF model) upon SiC ratio reaching 2.5 wt%. The AC conductivity values were improved upon loading from 3.30 × 10<sup>−9</sup> S.cm<sup>−1</sup> to 3.52 × 10<sup>−9</sup> S.cm<sup>−1</sup> at 100 Hz, and the dielectric constant was higher than PM finding with maintained low dielectric loss. The strongest activity and the greatest inhibitory zone of about 24 mm <em>Staphylococcus aureus</em> (gram-positive) appeared at a ratio of 2.5 wt% SiC. From the results obtained, these films are promising for use in UV-blocking, energy storage, and optoelectronic applications.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"42 ","pages":"Article 101479"},"PeriodicalIF":5.4500,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25000496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This work exhibits the incorporation of TiO2-SiC nanoparticles (NPs) for the first time via a green and cost-effective route. It examines their loading into a polymeric matrix (PM) composed of polyvinyl alcohol (PVA) and polyethylene glycol (PEG) at several weight percentages (wt%) via a casting way. The Fourier transform infrared spectroscopy (FTIR) revealed the chemical properties. Field emission scanning electron microscopy (FESEM) confirmed that the surface morphology of PM is rough and homogenous. Furthermore, the insertion of lower filler loadings of TiO2-SiC NPs was uniformly and well dispersed through the PM, reducing aggregations. It is rough and homogenous. The compositional elements were achieved using EDXs. The optical absorbance values were boosted by 85 % at a wavelength of 260 nm, decreasing the indirect bandgaps by 47.5 %, from 4.58 eV to 2.40 eV (Tauc model) and from 4.83 eV to 2.60 eV (ASF model) upon SiC ratio reaching 2.5 wt%. The AC conductivity values were improved upon loading from 3.30 × 10−9 S.cm−1 to 3.52 × 10−9 S.cm−1 at 100 Hz, and the dielectric constant was higher than PM finding with maintained low dielectric loss. The strongest activity and the greatest inhibitory zone of about 24 mm Staphylococcus aureus (gram-positive) appeared at a ratio of 2.5 wt% SiC. From the results obtained, these films are promising for use in UV-blocking, energy storage, and optoelectronic applications.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .