{"title":"Minimal contagious sets: Degree distributional bounds","authors":"Itai Arieli , Galit Ashkenazi-Golan , Ron Peretz , Yevgeny Tsodikovich","doi":"10.1016/j.jet.2025.106009","DOIUrl":null,"url":null,"abstract":"<div><div>Agents in a network adopt an innovation if a certain fraction of their neighbors has already done so. We study the minimal contagious set size required for a successful innovation adoption by the entire population, and provide upper and lower bounds on it. Since detailed information about the network structure is often unavailable, we study bounds that depend only on the degree distribution of the network – a simple statistic of the network topology. Moreover, as our bounds are robust to small changes in the degree distribution, they also apply to large networks for which the degree distribution can only be approximated. Applying our bounds to growing networks shows that the minimal contagious set size is linear in the number of nodes. Consequently, for outside of knife-edge cases (such as the star-shaped network), contagion cannot be achieved without seeding a significant fraction of the population. This finding highlights the resilience of networks and demonstrates a high penetration cost in the corresponding markets.</div></div>","PeriodicalId":48393,"journal":{"name":"Journal of Economic Theory","volume":"226 ","pages":"Article 106009"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Theory","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022053125000559","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Agents in a network adopt an innovation if a certain fraction of their neighbors has already done so. We study the minimal contagious set size required for a successful innovation adoption by the entire population, and provide upper and lower bounds on it. Since detailed information about the network structure is often unavailable, we study bounds that depend only on the degree distribution of the network – a simple statistic of the network topology. Moreover, as our bounds are robust to small changes in the degree distribution, they also apply to large networks for which the degree distribution can only be approximated. Applying our bounds to growing networks shows that the minimal contagious set size is linear in the number of nodes. Consequently, for outside of knife-edge cases (such as the star-shaped network), contagion cannot be achieved without seeding a significant fraction of the population. This finding highlights the resilience of networks and demonstrates a high penetration cost in the corresponding markets.
期刊介绍:
The Journal of Economic Theory publishes original research on economic theory and emphasizes the theoretical analysis of economic models, including the study of related mathematical techniques. JET is the leading journal in economic theory. It is also one of nine core journals in all of economics. Among these journals, the Journal of Economic Theory ranks fourth in impact-adjusted citations.