On cycles and merge trees

IF 0.7 2区 数学 Q2 MATHEMATICS
Julian Brüggemann , Nicholas A. Scoville
{"title":"On cycles and merge trees","authors":"Julian Brüggemann ,&nbsp;Nicholas A. Scoville","doi":"10.1016/j.jpaa.2025.107967","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we extend the notion of a merge tree to that of a generalized merge tree, a merge tree that includes 1-dimensional cycle birth information. Given a discrete Morse function on a 1-dimensional CW complex, i.e., a multigraph, we construct the induced generalized merge tree. We give several notions of equivalence of discrete Morse functions based on the induced generalized merge tree and how these notions relate to one another. As a consequence, we obtain a complete solution to the inverse problem between discrete Morse functions on 1-dimensional CW complexes and generalized merge trees. After characterizing which generalized merge trees can be induced by a discrete Morse function on a simple graph, we give an algorithm based on the induced generalized merge tree of a discrete Morse function <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></math></span> that cancels the critical cells of <em>f</em> and replaces it with an optimal discrete Morse function.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107967"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001069","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the notion of a merge tree to that of a generalized merge tree, a merge tree that includes 1-dimensional cycle birth information. Given a discrete Morse function on a 1-dimensional CW complex, i.e., a multigraph, we construct the induced generalized merge tree. We give several notions of equivalence of discrete Morse functions based on the induced generalized merge tree and how these notions relate to one another. As a consequence, we obtain a complete solution to the inverse problem between discrete Morse functions on 1-dimensional CW complexes and generalized merge trees. After characterizing which generalized merge trees can be induced by a discrete Morse function on a simple graph, we give an algorithm based on the induced generalized merge tree of a discrete Morse function f:XR that cancels the critical cells of f and replaces it with an optimal discrete Morse function.
关于循环和合并树
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信