S. Skinner-Ramos , M.L. Freeman , D. Pete , R.M. Lewis , M. Eichenfield , C. Thomas Harris
{"title":"Stress accommodation in nanoscale dolan bridges designed for superconducting qubits","authors":"S. Skinner-Ramos , M.L. Freeman , D. Pete , R.M. Lewis , M. Eichenfield , C. Thomas Harris","doi":"10.1016/j.supcon.2025.100158","DOIUrl":null,"url":null,"abstract":"<div><div>Josephson junctions are the principal circuit element in numerous superconducting quantum information devices and can be readily integrated into large-scale electronics. However, device integration at the wafer scale necessarily depends on having a reliable, high-fidelity, and high-yield fabrication method for creating Josephson junctions. When creating Al/AlO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> based superconducting qubits, the standard Josephson junction fabrication method relies on a sub-micron suspended resist bridge, known as a Dolan bridge, which tends to be particularly fragile and can often times fracture during the resist development process, ultimately resulting in device failure. In this work, we demonstrate a unique Josephson junction lithography mask design that incorporates stress-relief channels. Our simulation results show that the addition of stress-relief channels reduces the lateral stress in the Dolan bridge by more than 70% for all the bridge geometries investigated. In practice, our novel mask design significantly increased the survivability of the bridge during device processing, resulting in 100% yield for over 100 Josephson junctions fabricated.</div></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"14 ","pages":"Article 100158"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830725000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Josephson junctions are the principal circuit element in numerous superconducting quantum information devices and can be readily integrated into large-scale electronics. However, device integration at the wafer scale necessarily depends on having a reliable, high-fidelity, and high-yield fabrication method for creating Josephson junctions. When creating Al/AlO based superconducting qubits, the standard Josephson junction fabrication method relies on a sub-micron suspended resist bridge, known as a Dolan bridge, which tends to be particularly fragile and can often times fracture during the resist development process, ultimately resulting in device failure. In this work, we demonstrate a unique Josephson junction lithography mask design that incorporates stress-relief channels. Our simulation results show that the addition of stress-relief channels reduces the lateral stress in the Dolan bridge by more than 70% for all the bridge geometries investigated. In practice, our novel mask design significantly increased the survivability of the bridge during device processing, resulting in 100% yield for over 100 Josephson junctions fabricated.