NMDAR dysfunction in autism spectrum disorders: Lessons learned from 10 years of study

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Soowon Lee , Heera Moon , Eunjoon Kim
{"title":"NMDAR dysfunction in autism spectrum disorders: Lessons learned from 10 years of study","authors":"Soowon Lee ,&nbsp;Heera Moon ,&nbsp;Eunjoon Kim","doi":"10.1016/j.conb.2025.103023","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past decade or so, mouse models of autism spectrum disorders (ASD) have been extensively studied in the search for key mechanisms underlying the disorder. Numerous intriguing mechanisms have been proposed, spanning various levels of the neural system, including molecular, synaptic, neuronal, circuit, and systems-level processes. However, no single mechanism has emerged as universally applicable, highlighting the heterogeneous nature of the genetic and neurobiological underpinnings of ASD. Among these, the NMDA receptor (NMDAR) dysfunction hypothesis has garnered significant attention. Many mouse models exhibit NMDAR dysfunction, with NMDAR hypofunction appearing more prevalent than hyperfunction. Nevertheless, not all mouse models display this dysfunction, suggesting that NMDAR abnormalities may not be ubiquitous across models, or that we have yet to fully explore the spectrum of NMDAR-related dysfunction in ASD. These findings underscore the need to consider multiple factors when studying ASD mouse models, including different mutations within the same gene, gene deletion dosage, genetic background, sex, age, brain regions, cell types, and neural circuits.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"92 ","pages":"Article 103023"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000546","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade or so, mouse models of autism spectrum disorders (ASD) have been extensively studied in the search for key mechanisms underlying the disorder. Numerous intriguing mechanisms have been proposed, spanning various levels of the neural system, including molecular, synaptic, neuronal, circuit, and systems-level processes. However, no single mechanism has emerged as universally applicable, highlighting the heterogeneous nature of the genetic and neurobiological underpinnings of ASD. Among these, the NMDA receptor (NMDAR) dysfunction hypothesis has garnered significant attention. Many mouse models exhibit NMDAR dysfunction, with NMDAR hypofunction appearing more prevalent than hyperfunction. Nevertheless, not all mouse models display this dysfunction, suggesting that NMDAR abnormalities may not be ubiquitous across models, or that we have yet to fully explore the spectrum of NMDAR-related dysfunction in ASD. These findings underscore the need to consider multiple factors when studying ASD mouse models, including different mutations within the same gene, gene deletion dosage, genetic background, sex, age, brain regions, cell types, and neural circuits.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Neurobiology
Current Opinion in Neurobiology 医学-神经科学
CiteScore
11.10
自引率
1.80%
发文量
130
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance. The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives. Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories: -Neurobiology of Disease- Neurobiology of Behavior- Cellular Neuroscience- Systems Neuroscience- Developmental Neuroscience- Neurobiology of Learning and Plasticity- Molecular Neuroscience- Computational Neuroscience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信