Uniform convergence of finite element method on Vulanović-Bakhvalov mesh for singularly perturbed convection–diffusion equation in 2D

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xianyang Zhao, Jin Zhang
{"title":"Uniform convergence of finite element method on Vulanović-Bakhvalov mesh for singularly perturbed convection–diffusion equation in 2D","authors":"Xianyang Zhao,&nbsp;Jin Zhang","doi":"10.1016/j.camwa.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the uniform convergence of arbitrary order finite element methods on Vulanović-Bakhvalov mesh. We carefully design a new interpolation based on exponential layer structure, which not only overcomes the difficulties caused by the mesh step width, but also ensures the Dirichlet boundary condition. We successfully demonstrate the uniform convergence of the optimal order in the energy norm. The results of numerical experiments strongly validate our analysis.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"188 ","pages":"Pages 183-194"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500152X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the uniform convergence of arbitrary order finite element methods on Vulanović-Bakhvalov mesh. We carefully design a new interpolation based on exponential layer structure, which not only overcomes the difficulties caused by the mesh step width, but also ensures the Dirichlet boundary condition. We successfully demonstrate the uniform convergence of the optimal order in the energy norm. The results of numerical experiments strongly validate our analysis.
二维奇异扰动对流扩散方程的 Vulanović-Bakhvalov 网格上有限元方法的均匀收敛性
研究了Vulanović-Bakhvalov网格上任意阶有限元方法的一致收敛性。我们精心设计了一种新的基于指数层结构的插值方法,既克服了网格步宽带来的困难,又保证了Dirichlet边界条件。我们成功地证明了最优阶在能量范数上的一致收敛性。数值实验结果有力地验证了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信