Nicolò Mattiuzzo, Marco Azzolin, Arianna Berto, Stefano Bortolin, Davide Del Col
{"title":"Flow boiling heat transfer of new refrigerant blends: Experimental data in a microchannel and modelling","authors":"Nicolò Mattiuzzo, Marco Azzolin, Arianna Berto, Stefano Bortolin, Davide Del Col","doi":"10.1016/j.icheatmasstransfer.2025.108929","DOIUrl":null,"url":null,"abstract":"<div><div>Mixtures of hydrofluorocarbons (HFCs) and hydrofluoroolefins (HFOs) are suitable as drop-in substitutes in refrigeration and air conditioning, due to the low global warming potential (GWP) and desired thermodynamic properties. In the present work, the flow boiling heat transfer of four HFOs/HFCs mixtures has been studied inside a 0.96 mm diameter channel. Three of those mixtures, R513A (R1234yf/R134a, 56/44 % by mass, GWP<sub>100-y</sub> = 629), R516A (R1234yf/R152a/R134a 77.5/14/8.5 % by mass, GWP<sub>100-y</sub> = 131) and R515B (R1234ze(E)/R227ea, 91/9 % by mass, GWP<sub>100-y</sub> = 299), are azeotropic mixtures, while the fourth is quasi-azeotropic mixture R450A (R1234ze(E)/R134a, 56/44 % by mass, GWP<sub>100-y</sub> = 547, <em>ΔT</em><sub><em>GL</em></sub> = 0.63 K at 30 °C). The experimental campaign was conducted using a test section where the flow boiling is promoted by a secondary fluid, at 30 °C mean saturation temperature and mass flux between 300 kg m<sup>−2</sup> s<sup>−1</sup> and 600 kg m<sup>−2</sup> s<sup>−1</sup>. The present data have been compared with the heat transfer coefficient of R134a, in order to assess the suitability of its drop-in substitutes. From the comparison between experimental data and the predictions from some semi-empirical models, a modified method is presented. The new flow boiling heat transfer correlation has been successfully tested with data of propane, propylene, R32 and R1234yf.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"164 ","pages":"Article 108929"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325003550","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mixtures of hydrofluorocarbons (HFCs) and hydrofluoroolefins (HFOs) are suitable as drop-in substitutes in refrigeration and air conditioning, due to the low global warming potential (GWP) and desired thermodynamic properties. In the present work, the flow boiling heat transfer of four HFOs/HFCs mixtures has been studied inside a 0.96 mm diameter channel. Three of those mixtures, R513A (R1234yf/R134a, 56/44 % by mass, GWP100-y = 629), R516A (R1234yf/R152a/R134a 77.5/14/8.5 % by mass, GWP100-y = 131) and R515B (R1234ze(E)/R227ea, 91/9 % by mass, GWP100-y = 299), are azeotropic mixtures, while the fourth is quasi-azeotropic mixture R450A (R1234ze(E)/R134a, 56/44 % by mass, GWP100-y = 547, ΔTGL = 0.63 K at 30 °C). The experimental campaign was conducted using a test section where the flow boiling is promoted by a secondary fluid, at 30 °C mean saturation temperature and mass flux between 300 kg m−2 s−1 and 600 kg m−2 s−1. The present data have been compared with the heat transfer coefficient of R134a, in order to assess the suitability of its drop-in substitutes. From the comparison between experimental data and the predictions from some semi-empirical models, a modified method is presented. The new flow boiling heat transfer correlation has been successfully tested with data of propane, propylene, R32 and R1234yf.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.