Peijie Lin , Hang Chen , Shuying Cheng , Xiaoyang Lu , Yaohai Lin , Lei Sun
{"title":"Assessment of power loss caused by soiling PV modules using a dual branch multi-modality deep learning network framework","authors":"Peijie Lin , Hang Chen , Shuying Cheng , Xiaoyang Lu , Yaohai Lin , Lei Sun","doi":"10.1016/j.renene.2025.122926","DOIUrl":null,"url":null,"abstract":"<div><div>Soiling can reduce the output power and work efficiency of photovoltaic (PV) modules, causing serious economic losses to PV systems. The cleaning schedules can be optimized to save economic expenses through the methods capable of estimating the power loss of PV modules resulting from soiling. This paper proposes a deep learning framework that combines visible light and infrared image information with dual branch cross-modality feature fusion. Initially, the MobileNetV2 is applied as the backbone of the dual branch framework to enhance the training efficiency and reduce the computational complexity. Subsequently, a cross-modality differential aware fusion module based on the channel attention mechanism (CA-CMDAF) is introduced to improve the cross-modality feature fusion capability of the model. Moreover, a multi-cascade and cross-modality fusion network and a multi-scale fusion network are integrated to further facilitate the effectiveness of feature fusion and reduce the loss of visual details during the feature extraction. Lastly, extensive experiments are carried out on the multi-modality dataset. The comparison results demonstrate the superior performance of the proposed dual branch network framework with the average accuracy of 88.27 %, which is higher than that of the single-modality models trained on either visible light or infrared images alone.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"248 ","pages":"Article 122926"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125005889","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Soiling can reduce the output power and work efficiency of photovoltaic (PV) modules, causing serious economic losses to PV systems. The cleaning schedules can be optimized to save economic expenses through the methods capable of estimating the power loss of PV modules resulting from soiling. This paper proposes a deep learning framework that combines visible light and infrared image information with dual branch cross-modality feature fusion. Initially, the MobileNetV2 is applied as the backbone of the dual branch framework to enhance the training efficiency and reduce the computational complexity. Subsequently, a cross-modality differential aware fusion module based on the channel attention mechanism (CA-CMDAF) is introduced to improve the cross-modality feature fusion capability of the model. Moreover, a multi-cascade and cross-modality fusion network and a multi-scale fusion network are integrated to further facilitate the effectiveness of feature fusion and reduce the loss of visual details during the feature extraction. Lastly, extensive experiments are carried out on the multi-modality dataset. The comparison results demonstrate the superior performance of the proposed dual branch network framework with the average accuracy of 88.27 %, which is higher than that of the single-modality models trained on either visible light or infrared images alone.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.