Sumedha Saha , Delrin Shaina Xaxa , Sudip K. Ghosh , Mrinal K. Maiti
{"title":"Enhanced accumulation of important bioproducts in Chlorella vulgaris through AGPase gene silencing coupled with polyethylene glycol treatment","authors":"Sumedha Saha , Delrin Shaina Xaxa , Sudip K. Ghosh , Mrinal K. Maiti","doi":"10.1016/j.jbiotec.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>Microalgae with rapid growth rate, ability to be cultivated in non-agricultural land, and producing numerous bioactive compounds have attracted attention for biofuel production and extraction of valuable co-products. This work focuses on the development of an industrially viable <em>Chlorella vulgaris</em> strain more suitable for biorefinery by downregulating the ADP-glucose pyrophosphorylase (AGPase) enzyme involved in starch biosynthesis. Transgenic lines of <em>C. vulgaris</em> generated through RNA interference (RNAi) demonstrated diminished starch content with an average of 6.7 % (dry cell weight, DCW) from 10 % (DCW) in the untransformed control, after 5 days of shake flask culture in tris acetate phosphate medium with 16 h:8 h light:dark cycle. Under the same growth condition, the total carbohydrate content decreased by an average of 23.5 %, while the lipid content and carotenoid level improved by an average of 19.3 % and 23 %, respectively, in the RNAi lines compared to the control. RNAi lines showed a higher yield of other important co-products, like protein and exopolysaccharide by an average of 30.6 % and 19.6 %, respectively, compared to the control. Interestingly, when polyethylene glycol (PEG) 6000 (0.5 % w/v) was supplemented in the culture medium of <em>C. vulgaris</em> grown till mid-log phase, RNAi lines along with the untransformed control exhibited enhanced level of valuable metabolites after 7 days of PEG treatment. The average carotenoid content of 25.5 μg/mg was recorded in PEG-treated RNAi lines compared to 15.34 μg/mg in PEG-untreated untransformed control alga. Under the similar growth condition, the average lipid content increased to 22.5 % (DCW) in PEG-treated RNAi lines compared to 16.28 % (DCW) in PEG-untreated untransformed control. Overall, the study encompasses use of genetic engineering tool in combination with the application of biochemical modulator PEG to divert the carbon flux from starch biosynthesis towards improved production of important metabolites in microalga.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"403 ","pages":"Pages 81-92"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816562500094X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae with rapid growth rate, ability to be cultivated in non-agricultural land, and producing numerous bioactive compounds have attracted attention for biofuel production and extraction of valuable co-products. This work focuses on the development of an industrially viable Chlorella vulgaris strain more suitable for biorefinery by downregulating the ADP-glucose pyrophosphorylase (AGPase) enzyme involved in starch biosynthesis. Transgenic lines of C. vulgaris generated through RNA interference (RNAi) demonstrated diminished starch content with an average of 6.7 % (dry cell weight, DCW) from 10 % (DCW) in the untransformed control, after 5 days of shake flask culture in tris acetate phosphate medium with 16 h:8 h light:dark cycle. Under the same growth condition, the total carbohydrate content decreased by an average of 23.5 %, while the lipid content and carotenoid level improved by an average of 19.3 % and 23 %, respectively, in the RNAi lines compared to the control. RNAi lines showed a higher yield of other important co-products, like protein and exopolysaccharide by an average of 30.6 % and 19.6 %, respectively, compared to the control. Interestingly, when polyethylene glycol (PEG) 6000 (0.5 % w/v) was supplemented in the culture medium of C. vulgaris grown till mid-log phase, RNAi lines along with the untransformed control exhibited enhanced level of valuable metabolites after 7 days of PEG treatment. The average carotenoid content of 25.5 μg/mg was recorded in PEG-treated RNAi lines compared to 15.34 μg/mg in PEG-untreated untransformed control alga. Under the similar growth condition, the average lipid content increased to 22.5 % (DCW) in PEG-treated RNAi lines compared to 16.28 % (DCW) in PEG-untreated untransformed control. Overall, the study encompasses use of genetic engineering tool in combination with the application of biochemical modulator PEG to divert the carbon flux from starch biosynthesis towards improved production of important metabolites in microalga.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.