Optimization of buffer layers for CZTSSe solar cells through advanced numerical modelling

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Tanzir Ahamed , Fozlur Rayhan , Imteaz Rahaman , Md Hamidur Rahman , Md Mehedi Hasan Bappy , Tanvir Ahammed , Sampad Ghosh
{"title":"Optimization of buffer layers for CZTSSe solar cells through advanced numerical modelling","authors":"Tanzir Ahamed ,&nbsp;Fozlur Rayhan ,&nbsp;Imteaz Rahaman ,&nbsp;Md Hamidur Rahman ,&nbsp;Md Mehedi Hasan Bappy ,&nbsp;Tanvir Ahammed ,&nbsp;Sampad Ghosh","doi":"10.1016/j.jpcs.2025.112744","DOIUrl":null,"url":null,"abstract":"<div><div>Inorganic kesterite-based solar cells, especially those employing copper zinc tin sulfoselenide (CZTSSe), stand out for their eco-friendly, cost-effective nature, fuelling widespread interest in advanced, high-performance photovoltaics. In this study, we utilize numerical modelling (SCAPS-1D) to optimize CZTSSe devices incorporating four buffer materials (CdS, SnS<sub>2</sub>, IGZO, and ZnSe). We systematically investigate absorber defect density, buffer layer thickness, and doping profiles to enhance device performance. As a result, the i-ZnO/SnS<sub>2</sub>/CZTSSe/Au configuration achieves a power conversion efficiency of 28.38 %, with an open-circuit voltage of 0.83 V, a short-circuit current density of 39.93 mA/cm<sup>2</sup>, and a fill factor of 85.4 %. Subsequent stability analyses under varying temperatures, resistances, and recombination mechanisms confirm the robustness of this optimized structure. These findings underscore the effectiveness of tailored buffer-layer strategies for elevating both efficiency and stability in CZTSSe solar cells.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"204 ","pages":"Article 112744"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725001969","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic kesterite-based solar cells, especially those employing copper zinc tin sulfoselenide (CZTSSe), stand out for their eco-friendly, cost-effective nature, fuelling widespread interest in advanced, high-performance photovoltaics. In this study, we utilize numerical modelling (SCAPS-1D) to optimize CZTSSe devices incorporating four buffer materials (CdS, SnS2, IGZO, and ZnSe). We systematically investigate absorber defect density, buffer layer thickness, and doping profiles to enhance device performance. As a result, the i-ZnO/SnS2/CZTSSe/Au configuration achieves a power conversion efficiency of 28.38 %, with an open-circuit voltage of 0.83 V, a short-circuit current density of 39.93 mA/cm2, and a fill factor of 85.4 %. Subsequent stability analyses under varying temperatures, resistances, and recombination mechanisms confirm the robustness of this optimized structure. These findings underscore the effectiveness of tailored buffer-layer strategies for elevating both efficiency and stability in CZTSSe solar cells.
基于先进数值模拟的CZTSSe太阳能电池缓冲层优化
无机硅基太阳能电池,特别是那些采用铜锌锡硫代硒化(CZTSSe)的太阳能电池,以其环保,成本效益的性质而脱颖而出,激发了人们对先进,高性能光伏发电的广泛兴趣。在本研究中,我们利用数值模拟(SCAPS-1D)来优化包含四种缓冲材料(CdS, SnS2, IGZO和ZnSe)的CZTSSe器件。我们系统地研究吸收器缺陷密度、缓冲层厚度和掺杂谱以提高器件性能。结果表明,i-ZnO/SnS2/CZTSSe/Au结构的功率转换效率为28.38%,开路电压为0.83 V,短路电流密度为39.93 mA/cm2,填充系数为85.4%。随后在不同温度、电阻和重组机制下的稳定性分析证实了这种优化结构的鲁棒性。这些发现强调了定制缓冲层策略在提高CZTSSe太阳能电池效率和稳定性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信