Liuyang Zhu , Sen Liu , Ze Wang , Yueyue Yang , Pinsheng Han , Wen Tong , Tianyu Zhao , Libo Wang , Tao Cui , Long Yang , Yamin Zhang
{"title":"Modeling hepatic steatosis with human adult stem cell-derived liver organoids","authors":"Liuyang Zhu , Sen Liu , Ze Wang , Yueyue Yang , Pinsheng Han , Wen Tong , Tianyu Zhao , Libo Wang , Tao Cui , Long Yang , Yamin Zhang","doi":"10.1016/j.isci.2025.112344","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic dysfunction-associated steatotic liver disease (MASLD) remains the most common chronic liver disease worldwide, and appropriate <em>in vitro</em> models are of great significance for investigating pathogenesis and drug screening of MASLD. In this study, human expandable cholangiocyte organoids were derived from adult stem cells of normal liver tissue. After differentiation, liver organoids (LOs) exhibited the functional characteristics and genomic features of mature hepatocytes. To induce steatosis, LOs were incubated with a gradient concentration oleic acid, and it was found that the model could recapitulate the development of lipid accumulation and inflammation. In addition, the drug sensitivity of the hepatic steatosis model was further verified through anti-steatosis drug testing. In summary, LOs have great potential for disease modeling, and the results indicate that the hepatic steatosis model may serve as a useful tool for exploring the molecular mechanisms and drug screening of MASLD.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 5","pages":"Article 112344"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225006054","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) remains the most common chronic liver disease worldwide, and appropriate in vitro models are of great significance for investigating pathogenesis and drug screening of MASLD. In this study, human expandable cholangiocyte organoids were derived from adult stem cells of normal liver tissue. After differentiation, liver organoids (LOs) exhibited the functional characteristics and genomic features of mature hepatocytes. To induce steatosis, LOs were incubated with a gradient concentration oleic acid, and it was found that the model could recapitulate the development of lipid accumulation and inflammation. In addition, the drug sensitivity of the hepatic steatosis model was further verified through anti-steatosis drug testing. In summary, LOs have great potential for disease modeling, and the results indicate that the hepatic steatosis model may serve as a useful tool for exploring the molecular mechanisms and drug screening of MASLD.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.